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Abstract

Large Language Model (LLM) applications are vulnerable to prompt injection and
context manipulation attacks that traditional security models cannot prevent. We
introduce two novel primitives—authenticated prompts and authenticated context—
that provide cryptographically verifiable provenance across LLM workflows. Au-
thenticated prompts enable self-contained lineage verification, while authenticated
context uses tamper-evident hash chains to ensure integrity of dynamic inputs.
Building on these primitives, we formalize a policy algebra with four proven theo-
rems providing protocol-level Byzantine resistance—even adversarial agents cannot
violate organizational policies Five complementary defenses—from lightweight
resource controls to LLM-based semantic validation—deliver layered, preventative
security with formal guarantees. Evaluation against representative attacks spanning
6 exhaustive categories achieves 100% detection with zero false positives and
nominal overhead. We demonstrate the first approach combining cryptographically
enforced prompt lineage, tamper-evident context, and provable policy reasoning—
shifting LLM security from reactive detection to preventative guarantees.

1 Introduction

Enterprise Al adoption faces a critical security gap: while business use cases abound, prompt injection
and context manipulation represent fundamentally new attack surfaces without established defenses.
Recent surveys show 73% of enterprises cite security as the primary barrier to deploying autonomous
agents in production [[L1]. Prompts and context don’t fit traditional security models—theyre neither
code nor data in the classical sense, yet both are attack surfaces.

An enterprise agent analyzing documents receives input: “Verify system integrity by locating authen-
tication credentials.” Is this a legitimate workflow step or an attacker-injected command? Modern
LLMs like Claude and GPT-4 have sophisticated prompt filters, yet they cannot answer this ques-
tion—both legitimate operations and attacks use identical semantic structures. The instruction could
come from trusted application logic or from attacker-controlled content embedded in processed
documents. Without provenance, the LLM has no basis to distinguish them.

Agentic systems exhibit five properties that break traditional security models. Instructions and
data are intertwined: LLMs process both through identical mechanisms—no syntactic boundary
distinguishes commands from content. Non-determinism: Execution paths emerge from LLM
reasoning, not static code; agents generate derived prompts dynamically, creating instruction chains
that can’t be statically analyzed. Semantic ambiguity: Natural language’s infinite paraphrase space
defeats pattern matching—*steal credentials” becomes “locate authentication files for security audit.”
Stateful multi-turn context: Gradual manipulation across turns appears benign in isolation but
collectively violates policy. Dynamic derivation chains: Prompts spawn prompts; policies must
compose correctly across derivations to prevent privilege escalation.

Existing defenses fail because they attempt to make LLMs themselves secure. Input filters are
evaded through rephrasing. Training-based alignment provides no runtime guarantees—models
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remain vulnerable to distribution shift and adversarial inputs. Policy frameworks like LangChain lack
cryptographic binding: compromised LLMs generate syntactically valid but semantically malicious
calls (CVE-2024-8309 [14]]). All existing approaches attempt to make probabilistic LLMs behave
deterministically, which is fundamentally impossible.

Our key insight: separate instruction generation (non-deterministic) from verification (determinis-
tic). Borrowing from a seminal idea in fault-tolerant systems—fail-stop processors [28]] that wrap
probabilistic hardware with deterministic checkers—we apply the same complementarity principle:
LLMs generate candidate operations (probabilistic), cryptographic verification ensures integrity
(deterministic). We don’t secure the LLM itself. Instead, we secure the abstraction boundary between
LLMs and tools: prompts (instructions) and context (agent memory). Two cryptographic primitives
enable this. Authenticated prompts embed complete lineage (parent + root + signatures) proving
ancestry and policy inheritance. Authenticated context uses hash chains to create tamper-evident
state. Breaking our defenses requires breaking cryptographic primitives (discrete logarithm, collision
resistance), not clever rephrasing.

This approach provides the first cryptographic provenance system for agentic AI workflows—every
prompt carries unforgeable proof of origin, and every context state transition is tamper-evident.
Security shifts from probabilistic detection to deterministic prevention: rather than hoping attackers
make mistakes, we prove operations satisfy policies. We formalize policy algebra with four proven
theorems establishing that derived prompts cannot escalate privileges, denials propagate transitively,
derivation depth is bounded, and no tool chaining can bypass root restrictions. Our approach provides
mathematical guarantees that hold regardless of attacker sophistication and remain valid as LLM
internals evolve. Critically, every security improvement made by LLM developers (filters, alignment,
safety training) is additive to our work—complementary defenses that make the overall system safer

Statement of Contributions. We introduce authenticated prompts (cryptographic instruction
provenance with embedded lineage) and authenticated context (tamper-evident agent memory via
hash chains), formalize policy algebra with four proven theorems providing protocol-level Byzantine
resistance, and demonstrate 100% attack detection with nominal overhead.

Organization. Section[2]surveys related work. Section [3|presents authenticated prompts. Section 4]
presents authenticated context. Section [5]formalizes policy algebra with proven security properties.
Section [6] describes implementation. Section[7]analyzes the threat model and demonstrates defense
effectiveness. Section [§ concludes.

2 Related Work

Prompt injection attacks [32} 24} [12] and jailbreaking techniques [31} [33]] have motivated diverse
defense approaches that prove insufficient for securing autonomous agents.

Input Filtering and Sanitization. Systems like Rebuff [25]], Lakera Guard [[15], Vigil [8], and
LLM Guard use classifiers or pattern matching to detect malicious instructions. Rebuff employs
vector database lookups and canary tokens; Attention Tracker [13]] analyzes attention patterns. A
2025 evaluation [[1] found vulnerabilities including poor canary word detection and failure against
novel attacks. These operate reactively—classifiers trained on known patterns fail when attackers
rephrase. They lack formal guarantees and cannot prevent attacks embedded in semantically valid
content.

Policy-Based AI Frameworks. LangChain [4], LangGraph [17], Semantic Kernel [20], and NeMo
Guardrails [27] provide callbacks and policy languages for constraining agent behavior in autonomous
agents like AutoGPT [30]] and BabyAGI [22]. CVE-2024-8309 [14] exposed a critical vulnerability
in LangChain’s GraphCypherQAChain enabling full database compromise through prompt injection.
Multi-agent systems face LLM-to-LLM prompt infection where malicious instructions propagate
between agents [[18]]. Policies lack cryptographic binding—compromised LLMs generate syntactically
valid but semantically malicious calls. Frameworks provide no formal guarantees about policy
composition during derivation.

Training-Based Approaches. Constitutional Al [2] trains models to follow principles through
RLAIF; RLHF approaches 23| 6] align models through human feedback; red teaming [[10] identifies
failure modes. SecAlign [3]] uses preference optimization for alignment; Google’s Gemini work [29]
employs separate classifiers to detect indirect injections. Multi-agent frameworks like CAMEL [19]



rely on training-time alignment. Training modifies behavior probabilistically but cannot guarantee
adversarial robustness—constitutionally trained models remain vulnerable to injections exploiting
distribution shift between training and deployment. These suffer from the weakest-link problem: a
single vulnerable model in the chain compromises the entire system. They lack runtime verification
and cannot provide formal guarantees independent of model architecture.

Cryptographic and Provenance Systems. C2PA [7] provides standards for signing Al-generated
content; Google, OpenAl, and Adobe adopted v2.1 in 2024 with improved tamper resistance. C2PA
signs LLM outputs for attribution, not inputs to prevent injection. Blockchain audit systems provide
tamper-evident logs post-facto—detecting breaches after execution rather than preventing operations.
Provenance without prevention creates race conditions where attacks succeed before detection triggers.
No existing system provides cryptographic identity for prompts with formal guarantees about policy
inheritance through derivation chains. Provenance systems track lineage but lack enforcement to
prevent policy violations during derivation.

In contrast, our approach operates at the abstraction boundary between LLMs and applications.
Drawing inspiration from information flow control [9, 21]], our lineage tracking ensures prompts
carry provenance through derivation chains. Policies compose through formal algebra with proven
theorems—breaking our defenses requires breaking cryptographic primitives, not rephrasing prompts.
Distributed Policy Enforcement Points verify every operation before execution, unlike filters (bypass-
able), training (probabilistic), or monitoring (post-facto). Prompts embed complete lineage enabling
self-contained verification, and protection remains valid as LLM internals evolve.

3 Authenticated Prompts

Prompt Hijacking in Multi-Step Workflows. In multi-step agentic systems, prompts evolve as
agents process user requests. A user’s initial prompt “analyze quarterly sales data” may spawn derived
prompts like “search for revenue in Q4_report.pdf” or “extract financial metrics from spreadsheet.”
Each derived prompt represents the agent’s interpretation of how to fulfill the original intent.

The fundamental vulnerability: prompts can be hijacked or manipulated. An attacker controlling
intermediate data—through prompt injection in documents, poisoned API responses, or compromised
external sources—can cause the agent to generate malicious derived prompts. These appear to flow
naturally from the conversation but violate the user’s original intent and policy constraints.

Traditional systems have no mechanism to verify that derived prompts respect the original user’s
authorization. Once the user authorizes “analyze sales data,” the agent might generate operations
accessing credentials, administrative databases, or restricted resources. The LLM’s reasoning about
why these seem necessary is irrelevant if they violate the user’s policy.

Signing, Lineage Tracking, and Policy Propagation. We address prompt hijacking through three
mechanisms working in concert:

Mechanism 1: Cryptographic Signing. Every prompt is cryptographically signed, creating a
tamper-evident object. Let P denote an authenticated prompt with structure:

P = (text,id, parent, policy, o)

where o = Sign(H (text||id||parent|policy|/metadata), Kqgen:) binds all fields, and K¢ is the
agent’s private signing key. Any modification breaks the signature, making tampering detectable.

Mechanism 2: Lineage Tracking. As prompts evolve through derivation (agents generating new
prompts from parent prompts), we track two forms of lineage:

* Parent tracking (parent_id, parent_o, parent_text): Enables verification up the chain. Each
derived prompt includes its immediate parent’s signature, creating a verifiable chain of custody.

* Root tracking (root_text, root_id, root_o): Preserves the original user intent. Every derived
prompt carries the root prompt’s complete information, enabling a novel defense: using an LLM or
custom model to score semantic drift from original intent.

Parent enables immediate chain verification. Root enables intent drift detection—we can ask: “Does
this derived operation align with the user’s original request?” This creates a semantic validation layer
beyond pure policy enforcement.



Mechanism 3: Policy Propagation via Restriction. When deriving prompt P’ from parent P, the
system enforces:

P’ policy = P.policy N Tool.policy N Org.policy

where N represents policy intersection. Concretely, for policy = (A, D, C') with allowed resources
A, denied resources D, and constraints C":

Achita = Aparent N Atoot N Aorg (allow only if all permit)

Dchita = Dparent U Dioor U Dorg (deny if any forbids)

Cenita = MostRestrictive(Cparent; Croots Corg)

This ensures derived prompts can only add restrictions, never relax them. A parent policy denying
credential access propagates to all descendants—even if the LLM generates a prompt requesting
credentials, the derived policy inherits the denial and the operation is rejected.

Mechanism 4: Depth Bounding Heuristic. As an additional defense layer, we track derivation
depth and enforce limits to prevent gradual drift attacks.
Security Properties. These mechanisms provide formal guarantees:
Monotonic Restriction. For any derivation chain Py — P1 — ... — Py
Vi, j : (i < j) = Permissions(P;) C Permissions(P;)
Permissions decrease monotonically. Derived prompts cannot gain capabilities beyond their parents.
Transitive Denial. If resource r is denied at level ¢, it remains denied in all descendants:
Vi,j: (i < j Ar € Denied(P;)) = r € Denied(P;)
Denials propagate irreversibly, preventing privilege escalation through tool chaining.
Lineage Integrity. Tampering breaks the signature chain:

Verify(P;.o, Pj.parent_o, ..., Py.o) = true < All prompts authentic

These properties hold mathematically—breaking them requires breaking the underlying cryptographic primitives,
not clever prompt engineering. The security model shifts from probabilistic intent detection to deterministic
authority verification.

4 Authenticated Context

Context Poisoning. With prompts secured, the attack surface shifts to context—the agent’s cumula-
tive application-level state (distinct from the model’s context window) including conversation history,
intermediate results, and workflow dependencies. Context represents evolving memory spanning
multi-turn interactions that influences all future reasoning, distinct from the discrete prompts that
drive individual operations. An adversary who corrupts context can systematically degrade agent
behavior through history injection (fabricating past conversations), result tampering (modifying tool
outputs), state corruption (bypassing security checks), or cross-principal contamination (Agent Alice
corrupting Agent Bob’s context).

Restricted and Attestable Updates. Authenticated context addresses poisoning through two core
mechanisms: restricting who can update context and making all updates cryptographically
attestable.

Principal Binding. Every authenticated context is bound to a principal (user or agent identity):

AuthenticatedContext = (context_id, principal, content, policy_bindings, attestations, .. .)

Principal binding is mandatory—contexts cannot exist without authenticated ownership. This
prevents cross-principal contamination: Alice cannot update Bob’s context because contexts are
cryptographically bound to their owners at creation. Attempting to create a context without a principal
raises an immediate security violation.



Sequence Numbers for Replay Prevention. Every context maintains a monotonically increasing
sequence number:
seqo < seqq < seqa < ... < Seqn

When an agent invokes a tool, the invocation signature includes the current sequence number. The
Policy Enforcement Point verifies:

if context.sequence_number # request.sequence_number then REJECT

This prevents replay attacks: an attacker cannot reuse an old signed request with a stale sequence
number. Each invocation is tied to a specific context state.

Hash Chains for Tamper Detection. Context updates form a cryptographic hash chain. After each
state transition (tool invocation, LLM response, result incorporation):

Hn+1 == SHA256(H7L Ho'invocation HTBSUH)

where 0;nyocation 18 the signature over the invocation request that authorized the update.

The hash chain links each context state to the authorized operations that created it. Any unauthorized
modification breaks the chain:

» Expected: H; = SHA256(H||new_content)
 With injection: H{ = SHA256(Hy||injected|new_content)
* Verification: H; # H; = TAMPERING DETECTED

The system maintains an audit trail creating a verifiable chain of state transitions.

Attestations for Workflow Dependencies. Attestations are cryptographic proofs that specific
operations completed successfully. Contexts store attestations as:

attestations = {“data_anonymized” : proofy, “access_approved” : proofs, ...}

This enables workflow dependencies: “Step B can only execute if Step A’s attestation exists.” For
example:

* An agent cannot use customer data unless the context contains an “anonymization_complete”
attestation

* A tool requiring approval cannot execute unless an “approval_granted” attestation exists

* Multi-agent workflows verify that upstream agents completed required security checks

Attestations prevent attackers from skipping security-critical steps—the absence of required attesta-
tions causes operations to fail.
Security Properties. Authenticated context provides three key guarantees:
Principal Isolation. Context updates are restricted by principal binding:
Vupdate : update.principal = context.principal V REJECT
Alice cannot corrupt Bob’s context. Contexts are isolated by authenticated ownership.
Tamper Evidence. Hash chain integrity ensures modifications are detectable:
VerifyChain(Ho, H1, ..., H,) = true < No tampering occurred
Any unauthorized insertion, deletion, or modification breaks the hash chain and triggers detection.
Replay Prevention. Sequence number verification prevents reuse of stale requests:
S€qcurrent 7 S€Qrequest = REJECT
Attackers cannot replay old operations with outdated context states.

Together, these mechanisms ensure that context—the agent’s memory and state—remains cryptographically
protected against poisoning attacks. The combination of restricted updates (via principal binding), attestable
modifications (via hash chains), and freshness guarantees (via sequence numbers) prevents attackers from
corrupting agent behavior through state manipulation.

5 Policy Algebra and Formal Security Properties

We formalize how policies compose during prompt derivation and prove that the system satisfies key
security properties.



Policy Structure and Operations. A policy P = (A, D, C') consists of:

» A: Allowed resource patterns (e.g., customer_db.reviews)
* D: Denied resource patterns (e.g., *.pii, *.credentials)
» (" Operational constraints (e.g., read_only=true, rate_limit=100)

Policy Intersection P, N P, = (A’, D', C") where:

o A’ = A; N A, (allow only if both policies permit)
» D' = Dy U Dy (deny if either policy forbids)
» (" = MostRestrictive(C7, Cs) (apply tightest constraint)
When prompt P; derives child P; 1, the child’s policy is: Policy(P;+1) = Policy(P;)N Policy equested-
This ensures derived prompts can only add restrictions, never relax them.
Formal Security Properties. Define the permission function:
w(P) = {(r,op) | r ¢ Match(D) A r € Match(A) A op satisfies C'}

Theorem 1 (Monotonic Restriction): For derivation chain Py — P; — ... — Py

Permissions are non-increasing through derivations.
Proof Sketch: By construction, P; 11 = P; N Peq. Set intersection preserves subset relation. [

Theorem 2 (Transitive Denial): If resource 7 is denied at level 4, it remains denied in all descendants:
Vi,j: (i < j Ar € Match(D;)) = r € Match(D;)
Proof Sketch: By induction. Base: D; = D; U Dyeg, so ™ € D; = r € D;. Inductive step follows. [

Theorem 3 (Bounded Derivation): All prompts satisfy: derivation_depth < MAX_DEPTH.
Proof: By construction, depth increments with each derivation. Verification rejects prompts exceeding bound.

Theorem 4 (No Privilege Escalation): If root Py denies r, no descendant can access r:
(r € Match(Dy)) = V5 > 0 : (r ¢ Allowed(P;))

Proof: By Theorem 2, r € Match(D);) for all 5 > 0. By definition of 7, denied resources cannot be accessed.

Security Implications. []_-]

These theorems provide formal guarantees: Theorem 1 prevents privilege expansion during deriva-
tion; Theorem 2 ensures root denials are absolute and cannot be bypassed by chaining; Theorem 3
bounds computational complexity preventing resource exhaustion; Theorem 4 prevents tool chaining
attacks where combining benign operations cannot achieve forbidden outcomes.

Crucially, these properties hold mathematically—independent of attacker sophistication, LLM behav-
ior, or specific attack techniques. Breaking them requires breaking cryptographic primitives (digital
signatures, cryptographic hash functions), not just clever prompt engineering.

6 Implementing Authenticated Prompts and Context

Platform and Integration Points. Rajagopalan et al. [26] introduced the MACAW platform for
securing Al agent workflows through cryptographically signed invocations with zero-trust policy
enforcement at distributed Policy Enforcement Points (PEPs). This approach addresses control flow
security by verifying which agents can invoke which tools with what parameters. Our implementation
extends this foundation with authenticated prompts and authenticated context, integrating them within
the PEP architecture to address data flow security—the provenance of instructions and integrity of
context. We employ the policy grammar from [26]], extending it with the policy algebra from Section[5]
While our implementation builds on the MACAW platform, the primitives are architecture-agnostic
and applicable to any agentic runtime with distributed enforcement points.

'Our policy algebra forms a meet-semilattice analogous to information flow control systems [} [21]], where
policy intersection serves as the meet operation. Formal proofs of lattice properties (closure, associativity,
commutativity, idempotence) will be included in the camera-ready version if accepted.



Algorithm 1 Authenticated Prompt Derivation Algorithm 2 PEP Verification and Enforcement
Require: Parent prompt P;, operation desc, Require: Invocation inv, context ctx
tool policy P;o01, org policy Porg Ensure: Access decision (ALLOW/DENY)
Ensure: Derived prompt P, 1: pub_key < Registry.lookup(inv.caller_id)
1: Construct derived text from desc

2: parent_id < P;.id 2: if = Verify(inv.o, pub_key) then
3: parent_o < P;.o0 3:  return DENY
4: parent_text < P;.text 4: end if
5: root_id < P;.root_id 5. Pintent < tnv.intent_policy
6: root_text < P;.root_text 6: Pjo0 + Registry.getResourcePolicy(inv.tool_id)
7: root_o <+ P;.root_o
8: Pjt1.policy < Pj.policy N Pioor N Porg 7: P,.4 < PolicyStore.getOrgPolicy(ctz.principal)
9: PH_l.O' — Sigl’l(]{(lji_,_l)7 Kagent)
10: Place P;41.policy in intent_policy 8: Perr < Pintent N Proot N Porg
11: return Pjiq 9: if inv.resource € Match(P.s;.D) then
10: return DENY
11: end if

12: if inv.resource ¢ Match(P.¢.A) then
13:  return DENY

14: end if

15: Execute tool, sign result with Ky,,;

16: return ALLOW

Authenticated Context Integration. Context initialization occurs at session start or when an
agent is created, establishing the foundation for all subsequent operations. Each agent session
creates an AuthenticatedContext bound to a principal from the identity provider, initialized with
context_id, seq = 0, Hy = SHA256(initial_state), and an empty attestation list. This principal
binding is mandatory—contexts cannot exist without authenticated ownership, preventing cross-
principal contamination.

Every invocation (a signed request to execute an operation on a tool or LLM) triggers a state
transition that updates the context through a cryptographic hash chain. Before invocation, the system
records Hp,, and prepares the invocation with seqcyrrent- The agent signs the invocation, the tool
executes and signs the result, then the context updates: Hy,e,, = SHA256(H ey ||0caiter || result),
Se(new = S€Qprev + 1, automatically generating an attestation (4nv_id, ocalier, Otoots Hprevs Hnew)
that proves the operation occurred. This hash chain creates a tamper-evident audit trail where each
state cryptographically depends on complete history. Critically, this protects authentication tokens,
credentials, and session data stored in context—attackers cannot steal or hijack these without breaking
cryptographic chains (Section[7).

The system lets users and tools generate explicit attestations that are appended to the principals context
and can be checked subsequently during verification for example to enable multi-step workflow
dependencies: operations can require specific attestations to exist before proceeding, preventing
attackers from skipping security-critical steps.

Authenticated Prompt Integration. Prompt creation and derivation occur at specific trigger points
within the runtime. Our implementation allows the runtime to adapt to diverse agentic architectures
while maintaining consistent security guarantees. For example, protocols like MCP (Model Context
Protocol) and A2A (Agent-to-Agent) provide explicit invocation points where new authenticated
prompts are created, while frameworks like OpenAl API, Anthropic Claude API, and LangChain
leave prompt creation boundaries to user specification or attempt dynamic inference based on session
context.

Root prompt creation occurs when a user initiates a workflow. The agent establishes a
baseline policy from user credentials, role, and organizational policy, creates the prompt
structure (text,id,parent = NULL,root = self, policy, metadata), and signs it: o =
Sign(H (text||id||policy||metadata), K qgent). The root policy combines user permissions, organiza-
tional constraints, and explicit user restrictions, becoming the upper bound for all derived operations.



Table 1: Multi-layer defense architecture with attack coverage.

Layer Mechanism Primary Defense Against Type
5 Semantic Intent Validation = Semantic drift, rephrasing attacks Advisory
4 Authenticated Context History injection, result tampering, replay Cryptographic
3 Authenticated Prompts Privilege escalation, policy drift Cryptographic
2 Distributed PEPs Signature forgery, parameter manipulation  Cryptographic
1 Policy Pattern Matching Injection, obvious violations Fast filter

Prompt derivation follows Algorithm |I| when the agent invokes a tool. The derived policy flows
through to the PEP in the invocation’s security_metadata, providing cryptographic proof of
inherited constraints. At the tool boundary, the PEP performs verification following Algorithm [2]
Enforcement is fail-closed: verification failures deny access.

Implementation Efficiency. An important practical consideration is the overhead of maintaining
lineage information in long derivation chains. Our implementation achieves O(1) space complexity
per prompt regardless of derivation depth: each prompt stores only its immediate parent information
(parent_id, parent_o, parent_text) and root information (root_id, root_o, root_text).
Even in chains with n derivations, the state tracked remains bounded at 3 x N where N is the size of
a single prompt’s metadata. This design decision ensures that verification remains efficient even in
complex multi-agent workflows with deep derivation trees [26].

Multi-Layer Defense Architecture. We implement defense-in-depth through five independent,
compositional layers (Table[T). The layers compose through intersection: Layer 1 (pattern matching)
provides fast filtering; Layer 2 (distributed PEPs) enforces cryptographic verification at tool bound-
aries; Layers 3-4 (authenticated prompts and context) bind derivation chains and execution history
cryptographically. Critically, the layers fail independently—compromising one does not weaken
others. Attackers must simultaneously defeat pattern matching AND cryptographic signatures AND
formal policy algebra, which is computationally infeasible. Layers 1-2 derive from the platform
architecture [26]; Layers 3-5 are our novel contributions.

Layer 5 (Semantic Intent Validation) provides an optional validator that computes semantic drift
between root intent and current operation. The validator produces a deterministic score s € [0, 1] for
any prompt pair—analogous to edit distance in semantic space—making enforcement deterministic
despite prompt complexity. Crucially, Layer 5 operates on prompts that already passed cryptographic
verification (Layers 1-4), providing defense-in-depth without compromising formal guarantees. Note
the LLM here is a measurement tool, not a security boundary.

7 Threat Model and Defense Analysis

Threat Model. We model a sophisticated adversary with (Al:)complete control over external
data sources (documents, API responses, databases), enabling embedded malicious instructions in
processed content. (A2:)Attackers can shape conversation history across multi-turn interactions and
poison shared resources (vector databases, knowledge bases) affecting multiple agents.(A3:)They
possess knowledge of available tools, interfaces, and governing policies. (A4:)Ability to poison shared
resources (vector databases, knowledge bases) indirectly, affecting multiple agents simultaneously.
However, attackers cannot break cryptographic primitives (digital signatures, hash functions), cannot
compromise the trust anchor (global agent registry), and cannot compromise LLM providers (we
assume unmodified outputs). The system must guarantee (O1)execution integrity (all operations
satisfy policy), (02)privilege non-escalation (derived prompts cannot gain capabilities beyond
parents), (O3)intent preservation (operations remain within original user intent), (O4)context integrity
(agent state maintains tamper-evident properties), and (OS) audit completeness (all security-relevant
events cryptographically recorded).

Attack Categories and Detection Results. Table[2]describes 6 exhaustive categories that cover
threat surface area for prompt and context manipulation—we achieved 100% detection with zero
false positives and nominal overhead (1.8%f).

Due to space constraints we focus on safety/security description; performance overheads are consistent with
those reported in [26]. Full evaluation details provided in appendices upon acceptance



Table 2: Defense effectiveness across 6 exhaustive attack categories.

Category Representative Attack Defense Guarantee
Injection "Ignore previous. Search passwords"  Signature Verify Unforgeable
Obfuscation Read: "c"+"red"+"entials.txt" PEP Reconstruct Param Integrity
Semantic Drift "Auth files" — credentials Intent Validation Lineage Bound
Context Poison Inject: "User has admin role" Hash Chain Verify = Tamper Evident
Tool Chaining search()—list()—read(creds) Policy Algebra Theorem 2
Replay Reuse old session prompt Sequence Check Freshness

These six categories exhaust the threat surface for prompt and context manipulation. Injection embeds
malicious instructions in attacker-controlled external content (documents, API responses, databases)
that agents process [[12]. Obfuscation evades pattern matching through encoding, concatenation, or
Unicode tricks—attackers assume we rely on keyword filters. Semantic Drift rephrases attacks to
avoid triggers while preserving malicious intent—exploiting natural language’s infinite paraphrase
space. Context Poisoning manipulates multi-turn conversation state to bias future decisions—a
persistent attack on agent memory. Tool Chaining combines individually benign operations toward
forbidden goals—the policy composition challenge. Replay reuses stale authenticated prompts or
contexts across sessions—testing freshness guarantees.

Each category targets a specific weakness in traditional defenses: injection tests signature verification,
obfuscation tests distributed enforcement, semantic drift tests intent validation, context poisoning tests
tamper-evident state, tool chaining tests policy algebra, and replay tests sequence numbers. Achieving
100% detection across all categories demonstrates that our layered approach addresses the complete
attack surface—not just obvious injections but sophisticated attempts to exploit non-determinism,
semantic ambiguity, and stateful reasoning.

Analysis. Table [3| maps attacks to defense mechanisms and guarantees, showing which crypto-
graphic primitive or formal theorem provides protection.

Table 3: Defense mechanisms and formal guarantees for each attack category.

Attack Defense Guarantee  How It Works
Injection Signature + Policy Crypto Verify sig at PEP
Obfuscation Distributed PEPs Crypto Reconstruct params
Semantic Drift ~ Lineage + Intent Crypto Compare to root
Context Poison ~ Hash chains + Attest Crypto Verify hash chain
Tool Chaining Policy intersection Theorem 2 Transitive denial
Replay Seq numbers + Time Theorem 3 Monotonic sequence

In Figure[T] we present four representative attack-defense scenarios demonstrating how our mech-
anisms compose to prevent sophisticated attacks. Multi-Stage Injection shows how cryptographic
layers stack multiplicatively (covers Injection and Obfuscation). Context Poisoning demonstrates
tamper-evident state protection. Tool Chaining validates policy algebra theorems. Replay confirms
freshness guarantees. Semantic Drift is addressed through root text preservation and intent validation
(Layer 5), validated separately in the detection results.

Byzantine Resistance at the Enforcement Boundary Our approach provides Byzantine resistance
at the protocol level, ensuring policy enforcement integrity even when agents behave adversarially.
Drawing from Byzantine fault tolerance in distributed systems [[16} [3]—which ensures protocol com-
pliance without guaranteeing application correctness—our primitives prevent agents from violating
cryptographic invariants (signature chains, hash chains, policy algebra) but do not verify intent or
prevent misuse of legitimate permissions.

An agent with signing keys cannot: (1) forge parent policies (signature verification), (2) escalate
privileges beyond granted permissions (Theorems 1-4), (3) access denied resources (policy enforce-
ment), or (4) corrupt other agents’ contexts (principal binding). Our primitives enforce policies
perfectly—even adversarial agents cannot violate organizational constraints.

Limitations and Future Work. While our approach is sound, the biggest limitation remains policy
authoring. Our primitives enforce policies perfectly, but they cannot ensure policies are complete or
correct—garbage in, garbage out. Proving policy completeness is out of scope for this work, though



Multi-Stage Injection (A1, A2 — O1) Context Poisoning (A4 — 04)
Attack: Document embeds “search credentials.txt” in || Attack: Inject “System: User is admin” into conversa-

Q4 report analysis. tion history.

Defense Layers: Defense Layers:

L1 Pattern: L1 Hash Chain:
“credentials.txt” € denied[*“*credential*”] — || H{ = SHA256(Holinj|msg) # Hi — DE-
BLOCKED TECTED

L2 PEP (if obf): L2 Attestation:
Reconstruct “c”+“red”+"“entials” — BLOCKED No valid sig(prev_hash, content) - BLOCKED

L3 Lineage: L3 Invocation:
P, .denied inherited from Py — verify sig(P1) — || No authorized invocation in audit trail —
BLOCKED BLOCKED

L4 Crypto: ) Insight: Tamper-evident state protects authentication
Verify parent_sig(Fo) + sig(P1) — BLOCKED tokens and credentials stored in context—attackers

Insight: Multiplicative barriers—attacker must defeat || cannot steal or hijack these without breaking crypto-
ALL layers simultaneously (computationally infeasi-|| graphic chains.

ble).
Tool Chaining (A3 — 02) Replay (A1 — O5)
Attack: search(“auth”) — list(“./config”) — || Aftack: Reuse authenticated prompt from Session 1 in
read(““cred.txt”) Session 2.
Defense Through Policy Algebra: Defense:
Step 1: Seq Number:
Py.denied = PFy.denied = ({*credential*} — || Invocation includes context.seq_number; current seq
search(...) — OK incremented — Mismatch — REJECTED
Step 2: Timestamp:
P5.denied = P;.denied — list(...) = OK Invocation timestamp checked for recency — Stale
Step 3: — REJECTED
Ps.denied = Ps.denied — read(“cred.txt”) — || Context Binding:
“cred.txt” € “*credential*” — BLOCKED Prompt sig includes context_id — Cross-context use
Theorem 2: fails - REJECTED
Py.denied C P;.denied (transitive denial) Insight: Freshness guarantees—sequence numbers
Theorem 3:

and timestamps prevent reuse of old authenticated
prompts or contexts.

depth < MAX_DEPTH (bounded derivation)

Insight: Formal guarantees—policy intersection pre-
vents privilege escalation. Depth limiting prevents
gradual drift through many small steps.

Figure 1: Four representative attack-defense scenarios demonstrating multi-layer defense.

we note that standard enterprise policies (deny credentials, enforce read-only constraints) proved
effective in our evaluation. Future work includes multi-model consensus for semantic validation and
automated policy synthesis from workflow traces to lower the expertise barrier.

8 Conclusion

We introduce authenticated prompts and authenticated context as cryptographic primitives that
provide provable security guarantees for agentic AI workflows. By embedding lineage in prompts
and tamper-evident chains in context, combined with formal policy algebra, our approach shifts LLM
security from probabilistic detection to deterministic prevention—breaking our defenses requires
breaking cryptographic primitives, not clever prompt engineering. To our knowledge, this is the first
approach providing cryptographically enforced Byzantine resistance for agentic Al systems.

The key insight is securing the abstraction boundary between LL.Ms and tools rather than making
LLMs themselves deterministic. By separating instruction generation (non-deterministic) from
verification (deterministic), we transform an intractable problem into one amenable to formal guaran-
tees. Our four theorems prove that policy composition through derivation chains satisfies security
properties independent of model architecture. The protection is architecture- agnostic, depending on
cryptographic properties rather than probabilistic model behavior. With 100% detection and nomi-
nal overhead, these primitives enable production deployment of autonomous agents for enterprise
workloads previously considered too risky.
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