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Abstract—Agentic Al systems automate enterprise workflows
but existing defenses—guardrails, semantic filters—are prob-
abilistic and routinely bypassed. We introduce authenticated
workflows, the first complete trust layer for enterprise agentic
Al Security reduces to protecting four fundamental bound-
aries: prompts, tools, data, and context. We enforce intent
(operations satisfy organizational policies) and integrity (op-
erations are cryptographically authentic) at every boundary
crossing, combining cryptographic elimination of attack classes
with runtime policy enforcement. This delivers deterministic
security—operations either carry valid cryptographic proof
or are rejected. We introduce MAPL, an Al-native policy
language that expresses agentic constraints dynamically as
agents evolve and invocation context changes, scaling as O(log
M + N) policies versus O(MxN) rules through hierarchical
composition with cryptographic attestations for workflow de-
pendencies. We prove practicality through a universal security
runtime integrating nine leading frameworks (MCP, A2A,
OpenAl, Claude, LangChain, CrewAl, AutoGen, Llamalndex,
Haystack) through thin adapters requiring zero protocol modi-
fications. Formal proofs establish completeness and soundness.
Empirical validation shows 100% recall with zero false posi-
tives across 174 test cases, protection against 9 of 10 OWASP
Top 10 risks, and complete mitigation of two high impact
production CVEs.

1. Introduction

Enterprises are struggling to deploy agentic Al systems in
production. While these systems promise to automate com-
plex workflows—managing financial transactions, patient
records, and critical infrastructure—they introduce security
challenges that existing defenses cannot address. For exam-
ple, within hours of releasing the OpenAl Atlas browser,
researchers demonstrated that malicious instructions em-
bedded in webpage content could trigger the assistant to
exfiltrate credentials [1]. OpenAI’'s CISO acknowledged
that “prompt injection remains an unsolved problem” [2]].
The challenge runs deeper than prompt injection alone.
LLMs cannot distinguish instructions from data. Non-
deterministic execution paths cannot be predicted or stati-
cally analyzed. Multi-turn interactions allow gradual context
manipulation where each message appears benign. Existing
approaches look for patterns or are probabilistic—both re-
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quire enumerating attacks, leaving defenders grappling with
unknown unknowns.

We eliminate unknown unknowns through a systematic
approach: instead of enumerating attacks, we bound the
system deterministically. We build on the realization that
agentic systems can be abstracted as simple, byzantine,
distributed systems — multiple entities interacting across
well defined boundaries. Now security reduces to protecting
boundary crossings. Conceptually, our approach is based on
satisfying two properties at each boundary crossing : under-
standing intent ensuring operations satisfy organizational
policies, and enforcing integrity to ensure operations are
authentic and unmodified. Both are necessary, and neither
is sufficient by itself. This design reduces agentic workflows
to a deterministic distributed system where boundaries are
guarded by policies and crossings are cryptographically pro-
tected. Breaking the system requires breaking cryptography,
not crafting clever prompts. Many classes of attack such
as identity spoofing, session replay, policy substitution etc
are eliminated by design — they must break cryptographic
primitives to succeed, others such as unauthorized data
access, privilege escalation, credential exfil etc are blocked
by policy at runtime. Architecturally, by-policy enforce-
ment and by-design elimination deliver complementary,
composable defense-in-depth.

We studied 100+ agentic applications and identified key
challenges: (1) Four simultaneous attack surfaces—tools,
data, prompts, context—where attacks compose across
surfaces to achieve objectives impossible through any
single surface. (2) Heterogeneous frameworks—Agents
are built using protocols (MCP, A2A), LLM interfaces
(Claude, OpenAl), orchestrators (LangChain, CrewAl, Au-
toGen). Heterogeneity is a permanent ecosystem feature.
(3) Compositional security gaps—per-framework checks
miss violations spanning compositions. (4) Developer bur-
den—requiring security logic at every interaction across
heterogeneous frameworks is impractical.

Combined, the attack surface grows faster than tools
can address, highlighting a critical gap: a trust layer for
Al—security infrastructure positioned between application-
layer defenses (don’t compose) and infrastructure primitives
(lack workflow semantics).

To address (1) we introduce authenticated work-
flows—a protocol-level primitive enforcing intent and in-
tegrity at every interaction. We prove the 4 attack surfaces



are minimal and complete. Protocol-level positioning ad-
dresses heterogeneity (2) and eliminates compositional gaps
(3). Thin wrappers across 9 popular frameworks resolve
developer burden (4), establishing the foundation for an
enterprise Al trust layer.

Authenticated workflows combine cryptography, zero-
trust principles, and runtime policy enforcement to ensure
each operation is authentic, authorized, and attested. We
present a novel design using distributed Policy Enforcement
Points (PEPs) embedded at control surfaces, verifying cryp-
tographic proofs independently with sub-millisecond over-
head, requiring no centralized infrastructure. Each surface
verifies operations independently before execution, creating
defense in depth where compromising one surface does not
compromise others.

To specify intent we introduce MAPL, a new Al-
native policy language that lets users express agentic con-
straints in a dynamic, scalable manner even as agents
evolve and invocation context changes. MAPL provides
three key capabilities: composable grammar with inheri-
tance enabling policies to layer and compose through in-
tersection semantics; radically reduced specification scaling
from O(Musers x Nresources) to O(log M + N) through
hierarchical composition and implicit principal resolution;
and dynamic state via attestations—signed claims proving
operations completed, enabling policies like “export data
only after anonymization-completed attestation exists” with
cryptographic enforceability. These advances overcome lim-
itations of traditional policy systems (OPA, AWS Cedar) in
agentic environments.

Our focus is control-flow protection across
operational boundaries—tool invocations and data
retrievals—complementing Rajagopalan et al. [3|], which
secure data flowing through prompts and context. Together,
these deliver a formal trust layer for enterprise AI. We prove
practicality through a universal security runtime backing
nine frameworks (Section [5) via thin adapters (200-500
LOC) requiring no protocol changes—demonstrating
framework-agnostic security.

Formally, we prove that the four boundaries are complete
and minimal, distributed enforcement is sound, and that pol-
icy composition preserves security properties. Empirically,
we validate these properties through comprehensive attack
testing and production CVE analysis.

Current agentic defenses—guardrails, prompt filters, se-
mantic analysis (pattern matching, ML models, heuris-
tics)—prioritize precision but deliver low or zero recall.
Adversarial prompts, encoding tricks, and novel patterns
routinely bypass them via semantic blind spots, while false
positives block legitimate operations. In contrast, our cryp-
tographic enforcement guarantees high precision and high
recall: operations either bear valid signatures satisfying poli-
cies or are rejected outright. Breaking the system demands
shattering cryptographic primitives—not crafting clever pat-
terns. This yields complete violation detection, zero false
positives, and deterministic trust via computational hardness.
Contributions. We present authenticated
workflows—protocol-level primitives enforcing
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Figure 1. Agentic workflow showing attack cascade across four boundaries.

cryptographic verification across four control surfaces
(prompts, tools, data, context), proven complete and minimal
(Lemma 6). We introduce MAPL, an Al-native policy
language providing cryptographic workflow dependencies
via attestations and reducing policy specification from
O(M x N) to O(logM + N) through hierarchical
composition (Theorems 1-3). We demonstrate universal
deployment across nine heterogeneous frameworks (MCP,
A2A, OpenAl, Claude, LangChain, CrewAl, AutoGen,
Llamalndex, Haystack) through thin adapters (200-500
LOC) requiring zero protocol modifications, with distributed
Policy Enforcement Points embedded at every boundary
providing zero-trust verification with sub-millisecond
overhead. Formal proofs establish completeness and
soundness (Lemmas 1-7); empirical validation demonstrates
deterministic guarantees (100% recall, 0% false positives)
across 174 test cases covering 9 of 10 OWASP Top 10 risks
and complete mitigation of two production CVEs (OpenAl
Atlas, GitHub MCP).

2. The Problem: How Agents Work

To understand what makes securing agentic systems hard,
consider Figure |1} which shows entities involved when you
invoke: “Read the Q4 financial documents and email a
summary to john@company.com.” The user’s prompt flows
to the LLM carrying instructions. The LLM reasons and
decides to invoke filesystem read and email send opera-
tions—MCP tools, OpenAl function calls, or custom im-
plementations. These tool invocations retrieve data from
document storage. As the agent executes this multi-turn
workflow, it maintains application-level state tracking in-
teraction history.

These interactions cross four fundamental boundaries.
S1—Prompts carry instructions into the LLM, directing
reasoning and tool selection. S2—Tools execute privileged
operations—filesystem access, database queries, API calls,
email sending. S3—Data flows from external sources into
agent reasoning—document stores, RAG corpora, vector



databases, web scraping. S4—Context maintains conver-
sational state across multi-turn interactions. A fundamen-
tal challenge: the LLM processes prompts and document
contents identically—malicious instructions in Q4.pdf are
indistinguishable from user requests. The system operates on
implicit trust: context is assumed valid, tools are presumed
authorized, data sources treated as benign. These boundaries
are framework-agnostic—LangChain chains and CrewAl
crews both manifest as prompt—LLM—tool sequences, all
crossing the same four surfaces. This universality enables
protocol-level security that works uniformly across hetero-
geneous systems.

Any surface can serve as an attack entry point with
consequences cascading across others. In OpenAl’s Atlas
attack [1]], malicious instructions embedded in data (S3)
flowed into LLM reasoning (S1), generating tool invocations
(S2) to exfiltrate credentials, all recorded in context (S4) as
normal execution. Different attacks enter through different
surfaces. We formalize this through our threat model.
Threat Model. We assume a sophisticated adversary and
formalize the threat model through adversary capabilities
and trust assumptions.

Adversary Capabilities Al—Application Control:
Adversaries may control  application-layer  code.
A2—Content Injection: They inject malicious content
into data sources, prompts, or context. A3—Component
Compromise: They may compromise components and
obtain private keys. A4—Network Attacks: They intercept,
replay, or modify network traffic. AS5—Compositional
Attacks: They perform gradual attacks across interactions
or span framework boundaries where each operation
appears authorized but collectively violates policies.

Trust Assumptions L1—Cryptographic Hardness:
Cryptographic primitives provide computational hard-
ness—adversaries cannot forge signatures without private
keys. L2—Trusted Control Plane: Control plane services
(Agent Registry, Policy Store, Logging, Routing) operate
in a minimal trusted computing base with cryptographic
integrity guarantees (hash chains for audit logs, Merkle
trees for policy store) and administrative access controls.
L3—Enforcement Integrity: PEP verification logic exe-
cutes correctly at framework boundaries. Adversaries with
application control (Al) can manipulate business logic
but cannot bypass framework APIs or corrupt PEP mem-
ory in enterprise deployments where frameworks are im-
mutable and operations route through instrumented APIs.
Bypassing PEPs requires compromising framework bina-
ries—equivalent to kernel compromise and out of scope.
This parallels OS kernel security. System-level attacks (de-
buggers, memory corruption) are out of scope—even if such
attacks bypass a local PEP, the remote side independently
verifies invocations, bounding the adversary to their appli-
cation scope without gaining new privileges.

Security Objectives Against this threat model, we estab-
lish five security objectives: O1—Integrity: Operations are
authentic and unmodified. O2—Policy Enforcement: All
operations satisfy organizational policies. O3—Privilege
Non-Escalation: Composed policies cannot grant broader

permissions than individual policies. O4—Context In-
tegrity: Session state is tamper-evident across interactions.
O5—Accountability: All operations have non-repudiable
audit trails. Section proves authenticated workflows
achieve O1-O5 against adversaries with capabilities A1-A5
under assumptions L1-L3.

Scope We focus on protocol-level authorization: crypto-
graphically enforcing that every operation satisfies organiza-
tional policy. We provide the mechanism—end users supply
the policy. Application-level safety (e.g., detecting malicious
code) requires domain-specific semantics and lies outside
protocol scope. We treat all applications as untrusted, bound
by system-level policies.

Current approaches are reactive—detecting patterns, fil-
tering inputs, sandboxing execution. Each new attack variant
requires new detection rules, creating an enumeration prob-
lem for an unbounded attack space. These adversary capabil-
ities (A1-AS5) target the four attack surfaces: application con-
trol and content injection compromise prompts/tools/data,
while compositional attacks exploit multi-framework gaps.
A1, A3, A4 render observability-based solutions useless. Re-
cent work addressing A2 and A4 with custom models [4] is
probabilistic and cannot guarantee safety deterministically.

Our Approach At the protocol level, agent—tool,
agent—LLM, and agent—data operations look identical—a
boundary crossing. Our approach converts each of these
into an authenticated workflow that is bound by policy
(02), verified for authorization (O1, O3, O4) and attested
on execution (O5). In the next section [3| we describe a
policy algebra that enforces O3. By-design mechanisms
(cryptographic signatures, hash chains) address component
compromise (A3) and network attacks (A4). By-policy
mechanisms (runtime verification at boundaries) address
application control (A1), content injection (A2), and gradual
attacks (AS5). Section [/| proves operations either carry valid
cryptographic proof satisfying policies, or are blocked be-
fore execution—deterministic guarantees, not probabilistic
detection.

Revisiting the example attack: Each boundary is pro-
tected by independent policies. Even if reasoning is cor-
rupted, restricted documents remain inaccessible. After com-
promise, the application is restricted to what policy permits.
Breaking the system requires simultaneously breaking all
enforcement layers—computationally hard.

The problem decomposes into two questions: How do
we specify policies that govern boundaries? How do we ver-
ify integrity at runtime? We introduce MAPL (Section [3) for
expressing intent and authenticated workflows (Section [)
for enforcing integrity, implemented via a universal trust

layer (Sections [6H7).

3. Specifying Intent: MAPL Policy Language
We introduce MAPL, an Al-native policy language to
specify intent. Agentic systems exhibit dynamism (agents
morph identities, spawn sub-agents, delegate capabilities)
and scale (10-100x growth per user) that break traditional
policy engines. Three properties challenge existing systems:
Contextual identity—agents represent different principals



based on runtime context, requiring dynamic principal res-
olution rather than static WHO bindings. Dual perspec-
tive—maintaining integrity requires validating every invo-
cation from both caller intent and resource constraints in-
dependently; traditional policies tightly couple caller and
resource, where compromising the caller grants resource ac-
cess. Verifiable workflow state—multi-step workflows need
sequential enforcement, since application-reported state is
untrusted, we need some form of attestation to verify oper-
ation A completed before invoking operation B.

MAPL addresses these through three design choices:
(1) Principals inferred from authenticated context at run-
time—enabling dynamic identity without policy updates; (2)
Caller and resource policies expressed independently, com-
posing via intersection—achieving defense in depth without
coordination; (3) Policies reference cryptographically veri-
fied attestations—enabling provable workflow dependencies.
The combination creates a complete, provable, composi-
tional model for expressing intent.

Policy Grammar. MAPL (MAPL Agentic Policy Lan-
guage) policies follow a structured grammar enabling ma-
chine verification and automated composition:
Policy {
policy_id: <unique_identifier>,
extends: <parent_policy_id>,
resources: [<resource_patterns>],
denied_resources: [<denial_patterns>],
constraints: {
parameters: {<resource>: {<param>:
— >1}},

denied_parameters: {<resource>: {<param>: [<

< patterns>]}},

attestations: [<required_attestation_names>]

}
}

[<patterns

A MAPL policy includes: policy_id a unique iden-
tifier for composition chains and cryptographic binding,
extends the parent policy reference for hierarchical com-
position, resources allowed operation patterns; wildcards
x/+x match single/recursive levels, denied_resources ex-
plicit blocks overriding allowances, and constraints (param-
eters , denied parameters, patterns and attestation require-
ments). Appendix [A] demonstrates concrete policies.
Hierarchical Composition. The extends field enables poli-
cies to inherit from parent policies through intersection
semantics. This allows organizational policies to layer (base
— department — team) where each child policy refines
its parent by adding restrictions, never relaxing constraints.
When a policy extends another, the effective permissions are
the intersection of parent and child—maintaining monotonic
restriction as the composition algebra formalizes below.

Expressiveness. The minimal grammar suffices through
four mechanisms: (1) Hierarchical resources with wildcards
express unbounded namespaces; (2) Positive and negative
specifications express arbitrary boolean combinations; (3)
Parameter constraints express any decidable predicate on
arguments; (4) Attestations enable sequential constraints
through cryptographic state. This covers organizational hi-
erarchies, dual-perspective defense, workflow dependencies,
exception patterns, and parameter controls.

Composition Algebra. We formalize how policies com-
pose at runtime and prove the system satisfies key security
properties.

Policy Structure and Operations.

A policy P = (R, D, C) consists of:

e R: Allowed resource patterns
e D: Denied resource patterns
e (' Operational constraints (parameters, attestations)

Policy Intersection P, N P, = (R, D', C’) where:

e R’ = Ry N Ry (allow only if both policies permit)

e D’ = D; U Ds (deny if either policy forbids)

e (' = MostRestrictive(C1, C2) (apply tightest con-
straint)

MostRestrictive(C, Co) takes minimum values for nu-
meric limits, intersection for allowed patterns, and union for
required attestations and denied patterns.

Policy Enforcement Points compose policies from orga-
nizational hierarchy and dual perspectives at runtime. This
ensures operations can only add restrictions, never relax
them. If a policy is absent, it contributes no constraints (most
permissive interpretation violating no stated constraint).

Formal Security Properties
Define the permission function:

w(P) = {(r,op) | r ¢ Match(D)Ar € Match(R)Aop satisfies C'}

Theorem 1 (Monotonic Restriction): For composition Py N
...NPy,:

V’i,j:(’L'<]'):>7T(Poﬁu.ﬂpj)gﬂ(Poﬂ...ﬂPi)

Proof Sketch: By construction, P;+1 = P; N Phext. Resource
intersection: R;+1 C R;. Denial union: D;y1 2 D;. Therefore
m(Pi+1) C w(F;). By induction, 7(P;) C m(F;) for i < 5. O

Theorem 2 (Transitive Denial): If resource r is denied by any
policy, it remains denied:

i : r € Match(D;) = r € Match(Deg)

Proof Sketch: Degr = Do U D1 U...UD,. If r € D, for any 1,
then 7 € Degr by set union. [J

Theorem 3 (No Privilege Escalation): If base policy Py denies
r, N0 composition grants access:

(r € Match(Dy)) = r ¢ Allowed(P.g)

Proof: By Theorem 2, if » € Match(Dy), then r € Match(Deg).
By definition of 7, denied resources cannot be allowed. [
Security  Implications These theorems  provide
formal guarantees: Theorem 1 prevents privilege
expansion—adding policies can only narrow permissions;
Theorem 2 ensures any layer’s denial is absolute;
Theorem 3 prevents escalation where combining policies
grants denied permissions.

Together, these achieve policy enforcement (O2) and
privilege non-escalation (03) from Section [2] Even when
adversaries compromise components and obtain their keys




(A3), the compromised component can only perform op-
erations within its policy-permitted scope—monotonic re-
striction prevents privilege expansion, and transitive de-
nial ensures root denials propagate through all derivations.
These properties hold mathematically—independent of at-
tacker sophistication or LLM behavior. Breaking them re-
quires breaking cryptographic primitives (digital signatures,
hash functions), not manipulation. No arbitrary overrides.
MAPL explicitly disallows overrides—they break provabil-
ity where Theorems 1-3 do not hold. Instead, administra-
tors create temporary groups with time-bounded validity
(analogous to Unix groups/permissions). These compose via
intersection, maintaining formal guarantees while support-
ing operational flexibility. Appendix [A] demonstrates time-
bounded emergency access.

Enabling Scale: From O(MxN) rules to O(log M +
N) policies Traditional policy engines require O(MxN)
explicit rules for M principals and N resources. Manag-
ing rules that scale combinatorially is impractical; MAPL
provides a practical solution as enterprises scale agents
across thousands of users. MAPL’s hierarchical composi-
tion and dynamic pricipal binding eliminates this explosion
by mirorring organizational structure — with a branching
factor of 8-16, departments scale logarithmically: D =~
logg_16(M)—exponentially smaller than M, teams inherit
upwards absorbing into the hierarchical tree. Resources
grow with functionality, independent of user count. Thus
MAPL requires log(M) + N policies — a significant, prac-
tical reduction.

Together, MAPL’s compositional algebra addresses all
three agentic requirements: contextual identity through run-
time principal resolution, dual perspective through inde-
pendent policy composition, and verifiable workflow state
through cryptographic attestations.

4. Authenticated Workflows

We now introduce authenticated workflows—a protocol-
level mechanism that realizes deterministic verification
at every agentic boundary crossing. Against adversaries
with capabilities A1-AS (Section @) authenticated work-
flows provide four cryptographic guarantees that together
achieve security objectives O1-O5:

Authenticity (achieves O1: Integrity): Every accepted
invocation is cryptographically linked to the principal that
initiated it and the operation being performed. Attackers
cannot forge invocations without possessing the principal’s
private key, binding both WHO (principal) and WHAT
(operation).

Policy Binding (achieves 02-O3: Policy Enforcement,
Privilege Non-Escalation): The policy governing an opera-
tion is cryptographically bound to the invocation, preventing
attackers from substituting policies without invalidating sig-
natures.

Tamper Evidence (achieves O4: Context Integrity): Any
modification to invocations, context state, or policy bindings
is cryptographically detectable through hash chains and
sequence numbers.

Non-Repudiation (achieves O5: Accountability): Digi-
tal signatures create undeniable proof linking principals to
their operations, enabling forensic analysis and compliance
verification with tamper-evident audit logs.

As with authenticated system calls [5]], [6], the core idea
is conceptually simple: augment every inter-entity invoca-
tion with a policy and cryptographic signature that ensures
integrity.

Invocation = (Args, Policy, MAC)
MAC = Sign (K, Args || Policy)

where the Message Authentication Code(MAC) signature
cryptographically binds the arguments and policy identifier
together using a secret or private key K. On the receiving
end, verification proceeds in three steps: validate the signa-
ture to ensure authenticity and integrity, retrieve and verify
the policy binding to prevent substitution, then evaluate
whether the operation satisfies policy rules.

4.1. Design Principles

Realizing authenticated workflows requires four principles
that compose to deliver the cryptographic guarantees:

Zero-Trust Identity: Every entity—agents, tools, data
sources, LLMs—possesses unique cryptographic identity
(keypair). Even entities in the same process verify each
other independently. No implicit trust propagates. We bridge
enterprise identity with agent-scale verification: External
principals authenticate via enterprise IAM; the runtime
propagates these identities as tamper-proof session context.
Internally, lightweight ephemeral signatures identify agents,
addressing dynamic identity challenges (Section [3).

Boundary Verification: Every inter-entity communica-
tion—prompt—LLM, agent—tool, tool—data—requires in-
dependent cryptographic verification. Operations carry sig-
natures and policy identifiers; receivers verify signatures
using registered public keys, retrieve policies, and evalu-
ate constraints. Verification is transport-agnostic—identical
across MCP, LangChain, OpenAl APIs, or custom protocols.

Policy Enforcement Points: PEPs provide independent
verification at every boundary—entities cannot verify their
own operations. Deployed in-process (linked library) or as
sidecars, PEPs verify invocations before execution, pro-
viding horizontal scalability, zero-trust verification, tamper
resistance, and enforcement independence. This relies on L3
(enforcement integrity).

Trustworthy Authenticated Context: Runtime pro-
vides tamper-evident session state such as from [3] that
ensures integrity including binding operations to session
scope (context IDs, session IDs), preventing replay (se-
quence numbers), detecting tampering (hash-chains), and
enabling workflow dependencies (attestations proving pre-
requisite operations completed).

The Protocol. These principles compose into a four-phase
protocol that every boundary crossing is an authenticated
workflow. Figure 2] shows the complete flow.

Registration: Each entity registers, receiving
(agent_id, keypair). Registration happens at finest
granularity—individual tools within agents receive

independent (tool_id, keypair), minimizing blast radius.
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Figure 2. Registration and invocation flow showing authentication, entity registration, signed invocation, and bidirectional verification.
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Figure 3. PEP verification flow with three-stage cryptographic verification
and optional custom verifiers.

Invocation: Caller constructs signed invocation binding
operation, arguments, policy, and session context.

Verification: The recieving PEP independently verifies
through three stages: (1) signature verification (authenticity
+ integrity), (2) policy binding verification (prevent substitu-
tion), (3) policy evaluation (resource permissions, parameter
constraints, attestations). Figure |3| details verification.

Attestation: Upon completion, the service signs the
result. Context is updated with cryptographically signed
attestation proving the operation completed, maintaining
Authenticated Context for downstream operations.

Services sign results; callers verify service signatures be-
fore accepting results—realizing bidirectional authentication
analogous to mutual TLS. This stateless protocol ensures
each hop is independently verified without implicit trust
propagating through multi-step workflows.

4.2. Verification Flow

Figure [3| shows the verification pipeline—the heart of our
integrity claim. The pipeline is always enforced and can-
not be escaped: every invocation undergoes cryptographic
verification before execution, with receivers independently

verifying callers using public keys retrieved from the reg-
istry.

Policy Construction: Stage 3 constructs the effec-
tive policy independently at the receiver through dual-
perspective enforcement. The PEP retrieves organizational
policies (company, business unit, team) and resource-
specific constraints, computing Py = Intent N Resource
(Section [3). The caller’s claimed intent is independently ver-
ified against resource constraints—callers cannot influence
policy evaluation. The intersection algebra (Theorems 1-3)
guarantees monotonic restriction: composed policies only
narrow permissions, never broaden them.

Custom Verifiers: MAPL’s declarative constraints han-
dle resource permissions and parameters, but some secu-
rity checks require imperative logic on invocation context.
Custom verifiers extend policy evaluation with PII detec-
tion, SQL injection prevention, prompt safety via LLM
classifiers (LLMs as judges), rate limiting, and geolocation
checks. Pre-invocation verifiers execute after policy eval-
uation; post-invocation verifiers process results. Operating
on cryptographically verified context, verifiers are trusted
code checked in by system administrators, not applica-
tion developers. Once declared in the verification flow, the
PEP enforces their execution—they cannot be bypassed.
This provides domain-specific extensibility (HIPAA, GDPR,
SOC 2) while maintaining integrity guarantees.

Four production verifiers demonstrate this architecture:
(1) MemorylIntegrity Verifier prevents memory poisoning
(OWASP LLMOL1) through rate limiting, protected field en-
forcement, and cryptographic integrity checks; (2) Work-
flowIntegrity Verifier prevents workflow hijacking (OWASP
LLMO04) by enforcing prerequisite steps and maintaining
attestation chains; (3) ToolAuthorizationVerifier prevents
tool misuse (OWASP LLMO06) via RBAC and dangerous
pattern detection (e.g., file_write—command_execute); (4)
Storagelntegrity Verifier prevents data exfiltration (OWASP
LLMO02) through path traversal prevention and encryption
enforcement. Appendix [A] provides implementation details.

This separation is crucial: the core verification pipeline
(Stages 1-3: signature verification, policy binding, policy
evaluation) provides deterministic guarantees—100% recall
with zero false positives through cryptographic enforce-
ment of MAPL’s declarative constraints (Lemmas 1, 4).



Custom verifiers (Stages 4-5) are optional administrative
extensions that may use heuristics (ML-based PII detection,
LLM safety classifiers) and could introduce false positives
if misconfigured, but cannot weaken core guarantees—they
can only add restrictions, never remove them. Verifiers
execute only after cryptographic verification passes, operat-
ing on authenticated invocations and tamper-evident state,
not unbounded application input. Even if a verifier fails
or is compromised, Stages 1-3 still enforce cryptographic
integrity and policy constraints. Bypassing verifiers requires
corrupting trusted administrator code (L3), not manipulating
application logic (Al).

Security Guarantees.Against adversaries Al-AS5 (Sec-
tion 2, the protocol mechanisms compose into defense-in-
depth through four independent cryptographic layers: In-
tegrity (signatures establish authenticity, defeating network
attacks A4); Authorization (policy intersection enforces
intent—operations must satisfy composed policies even with
valid signatures, preventing privilege escalation under appli-
cation control Al); Provenance (hash chains and sequence
numbers make context tamper-evident, defeating content
injection A2 and multi-turn manipulation AS); Compliance
(custom verifiers add domain-specific validation on cryp-
tographically verified context, providing non-repudiation).
Together these achieve security objectives O1-O5.

The protocol provides defense-in-depth: each layer op-
erates independently at each boundary (Lemma 7, Sec-
tion [7). Compromising signature verification doesn’t bypass
policy evaluation; tampering with context doesn’t defeat
tool PEPs; bypassing one verifier doesn’t invalidate cryp-
tographic checks. Section [/| formalizes these independence
guarantees.

5. A Universal Security Abstraction

Authenticated workflows provide a universal security ab-
straction for agentic AI— We validate this claim by securing
nine frameworks spanning three architectural layers: proto-
col standards (MCP, A2A), LLM APIs (OpenAl, Claude),
and orchestration frameworks (LangChain, CrewAl, Au-
toGen, Llamalndex, Haystack). Regardless of framework
architecture, every agentic interaction maps completely to
a verifiable boundary crossing governed by our four-phase
protocol: Registration — Invocation — Verification — At-
testation.

5.1. Framework Integration

Table [T] shows how nine frameworks map to authenticated
workflow primitives. We highlight representative examples
at each architectural layer:

Protocol Layer: MCP. MCP servers expose tools,
resources and prompts. Resources capture static data-sets
intended to give LLMs additional context to work with,
while MCP tools are active functions with side effects,
and parameters. Servers map to agents within our system,
prompts map to Authenticated Prompts [3[], and resources
and tools are abstracted as verified tools guarded by different
types of policies — each with a unique independent identity
and key pairs.

MCP Server -+ Agent with Registered Tools

Tools Resources Prompts
execute () read () getPrompt ()
params watch () arguments

template
4 | 4 | 4
Tool Tool Authenticated
(w/PEP) (w/PEP) Prompt
(policy-diff) (signed)

Protocol Layer: A2A. A2A—the agent-to-agent proto-
col—maps directly to authenticated workflows. Agents reg-
ister with cryptographic identity. Delegation becomes signed
tokens with scope constraints following MAPL’s intersec-
tion algebra—delegates cannot grant broader permissions
than received. Attestations enable workflow dependencies
through cryptographic proof, ensuring operations complete
in required order.

LLM Interfaces: OpenAl and Claude. OpenAl and
Claude follow identical patterns. API endpoints register as
agents. LLM inference operations (generate, complete, em-
bed) register as tools with embedded PEPs. Two deployment
variants provide flexibility: two-sided wrapping treats both
the LLM API and client application as agents—the API-
side PEP verifies incoming requests satisfy provider poli-
cies, while the client-side PEP verifies function calls satisfy
application policies; one-sided wrapping wraps only client-
side tools, treating the LLM API as passthrough, simplifying
deployment when the LLM provider is trusted for prompt
security and the focus is protecting client side tool calling.
This addresses the challenge that LLLMs are untrusted for
authorization decisions—verification must happen at func-
tion execution boundaries (S2) where PEPs independently
verify signatures and evaluate policies.

Orchestration Layer: LangChain. Orchestration
frameworks coordinate multi-step workflows across tools
and LLMs, exposing multiple control points: chain
composition logic, agent reasoning, memory operations,
inter-agent communication. Securing only individual
tools would leave composition and state management
unprotected.

Our design addresses security at four layers. Agents
register with cryptographic identity. Tools register in-
dependently with embedded PEPs—each tool invocation
undergoes signature verification and policy evaluation.
Chains—sequential compositions of operations—enforce
policy composition through intersection (Section [3)); if
a tool policy denies operations, composing that tool
into a chain cannot relax the restriction—effective pol-
icy becomes more restrictive through intersection, never
more permissive. Memory—persistent state across interac-
tions—enforces context integrity through authenticated con-
text [3]], preventing context poisoning (S4).



Framework  Layer Mapping to Authenticated Workflow Primitives

MCP Protocol Server—Agent, Tools—Tools (w/PEP), Resources— Tools (policy-differentiated),
Prompts— AuthenticatedPrompt

A2A Protocol Agents—Agents  (cryptographic identity), Delegation—Signed tokens (scope constraints), Attesta-
tions— Attestations (workflow dependencies)

OpenAl LLM API Endpoint— Agent, Operations (generate/complete/embed)— Tools (w/PEP), Two deployment variants (two-
sided/one-sided wrapping)

Claude LLM API Endpoint— Agent, Operations (generate/complete/embed)—Tools (w/PEP), Two deployment variants (two-
sided/one-sided wrapping)

LangChain Orchestration  Agents— Agents, Tools— Tools (w/PEP), Chains— Policy intersection, Memory— AuthenticatedContext (hash
chains prevent poisoning)

CrewAl Orchestration ~ Crew members— Agents, Roles— Attestations (cryptographically bound), Tasks— Signed invocations (role-
based authorization)

AutoGen Orchestration ~ Conversation agents—Agents, Code execution—Tool (w/PEP), Policies—Pluggable verifiers (AST analysis,
allowlists, sandbox constraints)

Llamalndex Orchestration ~ RAG pipeline— Agent, Query/Retrieve operations—Tools (w/PEP enforcing document access control to
prevent prompt injection via retrieval)

Haystack Orchestration ~ Document pipeline— Agent, Pipeline nodes—Tools (w/PEP), Sequential execution—Policy intersection

(nodes cannot relax constraints)

TABLE I. FRAMEWORK MAPPING TO AUTHENTICATED WORKFLOW PRIMITIVES.

LangChain Orchestrator (Agent with Tools)

Agents Tools Chains Memory
Coordinate|Individual|Sequential [Persistent
workflow operations|compose state

: | 1 | L \ L \

Agent Tool Policy |Authentic-

(w/PEP) n |ated \
Context
Each agent|Each tool |Effective |Context
has own verifies policy = integrity
identity signed N of all verified
+ policy invoc. tool every
before policies transition
execution

Other orchestration frameworks (CrewAl, AutoGen, Lla-
malndex, Haystack) follow similar patterns—roles map to
attestations for cryptographic role binding, code execution
uses pluggable verifiers for AST analysis, RAG pipelines
enforce document access control as detailed in Appendix

Al

5.2. Protocol-Level Universality

At the protocol level, all nine frameworks collapse to a uni-
form abstraction: agents invoke operations through signed
invocations; PEPs verify signatures and policies; operations
execute or are rejected. This uniformity enables consistent
security across heterogeneous compositions—LangChain or-
chestrating OpenAl invoking MCP tools—with independent
verification at each boundary.

When workflows span frameworks, compromising one
framework’s verification does not bypass others. Each
boundary’s PEP independently verifies: (1) signature valid-
ity (authenticity); (2) identity (preventing impersonation);
(3) policy evaluation of resource permissions, parameter
constraints, and attestations (authorization). This compo-
sitional approach—securing boundaries rather than frame-
works—enables uniform protection across heterogeneous
systems. Section [/| formalizes these guarantees through
Lemmas 6-7.

’ Agent ‘ ’ Agent ‘ ’ Agent

’ Agent H Agent ‘

(LLM) (MCP) (LangChain) (Tool) (SDK)
l Framework Adapters (OpenAl MCP, etc.) ‘
Tontrol Plane
Agent Policy . .
Registry Store Logging Routing

~
Enterprise Integrations (IAM, PKI, SIEM, Observability)

Figure 4. Agentic Al Trust Layer.

6. The Agentic Al Trust Layer

In this section we describe an Agentic Al Trust Layer, which
includes authenticated workflows and authenticated prompts
and context as described in [3]]. All nine frameworks map
onto the trust layer using thin framework adapters. The
trust layer comprises a control plane providing core services
(identity, policy, logging, routing), manages integrations
with enterprise infrastructure (IAM, PKI, storage, etc), a
verification gateway (sidecar PEP) and client libraries that
embed PEPs within agentic applications. Due to space we
focus our discussion on key design elements instead of an
exhaustive overview.

6.1. Architecture

Figure W] shows the trust layer architecture with agents
interfacing with the control plane.

Framework Adapters. Each framework integrates
through thin adapters that translate framework-native op-
erations into authenticated workflows. Adapters implement
the four-phase protocol—registration, invocation signing,
verification, and attestation—while presenting the frame-
work’s native API. Integration is transparent; developers use
standard framework APIs (MCP servers, OpenAl clients,
LangChain agents) while cryptographic enforcement hap-
pens automatically.

Control Plane Services. The control plane provides four
core services:



e Agent Registry: Stores agent identifiers and public
keys, and tool identifiers and public keys within
agents, preserving cryptographic lineage. Enables
instant credential revocation. PEPs retrieve public
keys during signature verification.

e Policy Store: Tamper-proof policy store where PEPs
retrieve and compose hierarchical policies (e.g.,
company, business unit, team) through intersection.

e Routing: Routes signed invocations between agents
across network boundaries, enabling callees to ac-
cess callers’ public keys for verification.

o Logging: Records all security events with crypto-
graphic lineage through tamper-evident hash chains.
Integrates with enterprise SIEM platforms. Blocked
operations generate structured logs indicating re-
jection reason (signature invalid, policy violation,
missing attestation, verifier failure) with sufficient
detail for debugging while avoiding policy leakage.
Audit logs enable root-cause analysis and compli-
ance reporting.

Distributed Enforcement. These services run in highly
available configurations, integrating with enterprise infras-
tructure (IAM, PKI, SIEM, observability platforms). The
control plane is multi-tenant—organizations deploy shared
infrastructure while maintaining cryptographic isolation be-
tween tenants. The architecture realizes zero-trust distributed
verification—each PEP independently verifies invocations
using public keys from the registry and policies from the
store. PEPs are embedded in-process by default (linked li-
brary) or deployed as sidecars, providing horizontal scalabil-
ity. With embedded PEPs, no centralized bottleneck exists;
verification happens locally at each boundary with sub-
millisecond overhead. Administrators can instantly revoke
credentials, update policies, or isolate agents through the
control plane. Due to space constraints, full architectural
details are out of scope; we refer interested readers to our
technical report for complete implementation details.

6.2. Design Decisions

Realizing authenticated workflows and our trust layer in pro-
duction exposed several practical challenges that needed an
opinionated design—we discuss six of the most interesting
design decisions addressing these challenges.

Identity Bridging. Enterprise identities need bridging
across frameworks—each has its own authentication model
(OAuth, API keys, SAML). Instead of solving this per-
framework, we bridge at the protocol level. When users
authenticate, the trust layer issues ephemeral keypairs bound
to their sessions and propagates cryptographically-verified
principals across all frameworks. Signed invocations carry
user identity through delegation chains; each PEP inde-
pendently verifies the originating principal from the Agent
Registry. This centralizes IAM integration—frameworks
don’t individually integrate with corporate identity systems;
the trust layer handles authentication once. When OAuth-
authenticated Alice invokes API-key-authenticated Claude
which calls MCP-authenticated tools, logs show “Alice

via Claude accessed file” preserving audit trails. Protocol-
level bridging provides a simpler programming model with
consistent principal propagation, eliminating per-framework
integration complexity.

Session Management. Many frameworks lack native
session concepts (MCP, LangChain are stateless), yet cross-
turn correlation is essential for security. Instead of modifying
each framework to add sessions, we track at the protocol
level using context identifiers and sequence numbers trans-
parent to frameworks. The trust layer maintains authenti-
cated context regardless of framework support—frameworks
without sessions receive invisible protocol-level tracking;
frameworks with sessions map directly. Multi-tenant archi-
tecture ensures cryptographically isolated contexts per ses-
sion, preventing cross-session contamination. This enables
unified audit trails across multi-framework workflows with-
out requiring protocol modifications to individual frame-
works.

Verifiable Delegation. Multi-hop delegation cre-
ates privilege escalation risks—compromised intermediate
agents could claim broader permissions than granted. In-
stead of trust-based delegation, we enforce cryptographic
scope narrowing. Signed delegation tokens contain delegator
identity, delegate identity, scope constraints, and expiration.
The trust layer enforces scope narrowing via intersection:
delegated scope = what delegator grants N what delegate
possesses, extending MAPL’s algebra (Section [3). Com-
promised agents cannot claim broader permissions than
granted; downstream services cryptographically verify dele-
gation validity. This provides provable least privilege across
heterogeneous frameworks.

Forward Secrecy. Long-lived API keys create opera-
tional and security risks—keys rarely rotate, and a single
leak compromises all sessions. Instead of relying on op-
erational key rotation policies, we use ephemeral keys by
design. Each session receives unique ephemeral keypairs
that expire automatically. Key rotation happens naturally
via session lifecycle without infrastructure modifications,
providing session-level forward secrecy. Compromising one
session’s key doesn’t affect other sessions, limiting blast
radius without operational overhead.

Service Accounts at Scale. Agentic systems spawn en-
tities dynamically at runtime—orchestrators spawn agents,
agents spawn tools, workflows create sub-workflows. Tradi-
tional IAM’s manual provisioning doesn’t scale to runtime
dynamics. Instead of manual provisioning, we automatically
provision cryptographic identities during registration (Sec-
tion[d) at tool-level granularity—assigning (tool_id, keypair)
and recording in the Agent Registry. No manual provision-
ing, no credential distribution, no IAM bottleneck. Each tool
maintains independent cryptographic accountability, mini-
mizing blast radius. This enables dynamic agent deployment
at enterprise scale.

Bidirectional Accountability. Unidirectional authen-
tication creates accountability gaps in agentic environ-
ments—callers cannot prove services performed operations
correctly; services cannot prove callers requested opera-
tions. Instead of one-way signatures, we use dual signa-



tures for mutual non-repudiation. Callers sign requests; ser-
vices sign results. Each operation produces cryptographic
proof from both parties, providing compliance-grade au-
dit trails—services cannot repudiate actions; callers cannot
repudiate requests. Combined with identity bridging and
tamper-evident logging, this delivers complete accountabil-
ity across heterogeneous authentication boundaries.

7. Formal Analysis

We prove authenticated workflows achieve O1-O5 against
adversaries A1-AS5 under assumptions L1-L3 via seven lem-
mas organized around intent and integrity. Integrity proper-
ties (Lemmas 1, 2, 3) ensure operations are authentic and
tamper-evident. Intent properties (Lemmas 4, 5) ensure op-
erations satisfy policies and compose safely. Completeness
properties (Lemmas 6, 7) ensure all operations are verified
and verification is independent.

Main Security Theorem. Theorem (Authenticated Work-
flows Security): Under trust assumptions L1-L3, authenti-
cated workflows achieve integrity (O1), policy enforcement
(02), privilege non-escalation (O3), context integrity (O4),
and accountability (O5) against adversaries with capabilities
Al-AS.

Integrity Properties. These lemmas ensure operations are
authentic, tamper-evident, and non-repudiable—addressing
adversaries with component compromise (A3) and network
attack (A4) capabilities.

Lemma 1 (Authenticity): All accepted invocations have
valid cryptographic signatures binding the principal to the
operation, arguments, policy, and context state.

Proof: Policy Enforcement Points verify signatures us-
ing principals’ public keys retrieved from the Agent Registry
(Section [5)). Under cryptographic hardness assumption L1,
forging signatures without the private key is computationally
infeasible—even adversaries with application control (Al),
network access (A4), or compromised components (A3) can-
not produce valid signatures for other principals’ identities.
This achieves integrity (O1): operations are cryptographi-
cally authentic. J

Lemma 2 (Tamper Evidence): Modifications to context
state or audit logs are cryptographically detectable, and
replay attacks are prevented.

Proof: Context state is maintained through hash chains
linking sequential states: h, = Hash(h;—; | state; ||
sequence,). Each invocation includes a monotonically in-
creasing sequence number bound in the signature. Modi-
fying any state requires finding hash collisions; replaying
old invocations is detected because PEPs reject sequence
numbers less than or equal to previously processed values.
Under cryptographic hardness (L1), finding collisions is
computationally infeasible. Multi-turn manipulation attacks
(AS) attempting gradual state poisoning or replayed opera-
tions are detected because tampering breaks the hash chain
or violates sequence monotonicity. Audit logs use the same

hash chain mechanism. This achieves context integrity (04).
O

Lemma 3 (Non-Repudiation): Principals cannot deny
performing operations recorded in audit logs with valid
signatures.

Proof: Only the principal possessing the private key can

generate valid signatures (Lemma 1). Audit logs maintain
tamper-evident records (Lemma 2). Therefore, signed opera-
tions in audit logs constitute cryptographic proof of principal
actions. This achieves accountability (O5). [
Intent Properties. These lemmas ensure operations satisfy
policies and compose safely—addressing adversaries with
application control (A1), content injection (A2), and gradual
attack (AS) capabilities.

Lemma 4 (Policy Enforcement): All executed opera-
tions satisfy the effective policy composed from organiza-
tional hierarchy and resource constraints, with the policy
identifier cryptographically bound in the signature.

Proof: Each invocation includes a policy identifier in
the signed payload. The PEP retrieves policies and com-
putes the effective policy P through intersection of all
applicable policies—organizational (base, department, team)
and resource-specific (Section [3). Adversaries attempting
policy substitution attacks (capabilities Al, A4) fail be-
cause modifying the policy identifier invalidates the sig-
nature (Lemma 1). Policy intersection ensures monotonic
restriction (Section |3} Theorems 1-3)—composed policies
can only become more restrictive, never more permissive.
This achieves policy enforcement (O2) and privilege non-
escalation (03). [J

Lemma 5 (Composition Safety): When workflows
span multiple frameworks, security properties are preserved
across framework boundaries.

Proof: Consider operation Ol on framework F1 in-
voking operation O2 on framework F2. Both invocations
carry signatures binding principals and policies (Lemma 1).
Framework F2’s PEP independently verifies O2’s signature
and computes effective policy as the intersection of F1’s
policy and F2’s policy (Lemma 4). Framework F1 cannot
bypass F2’s verification because: (a) F2’s PEP verifies sig-
natures independently (Lemma 7, proven below), and (b)
policy intersection ensures O2 must satisfy both F1 and
F2 constraints. Composition across N frameworks creates
N independent verification points with composed policy
Py = PLN Py N...N Py, achieving monotonic restriction.
Section 13 demonstrates this across nine framework combi-
nations. [

Completeness Properties. These lemmas ensure all oper-
ations are verified and verification is independent across
control surfaces.

Lemma 6 (Surface Completeness and Minimality):
The four control surfaces {S1, S2, S3, S4} are complete
(all resource access operations cross at least one surface)
and minimal (each surface is necessary).

Proof by Enumeration and Necessity:

Completeness: We enumerate all resource access opera-
tions and show each crosses at least one surface: (1) Com-
putational Resources—LLM inference crosses S1 (prompts
carry instructions); tool execution crosses S2 (privileged
operations). (2) Data Resources—RAG retrieval, database



queries, web scraping cross S3 (external data flows into
reasoning)—exploited by content injection attacks (A2). (3)
State Resources—Session state, workflow context, mem-
ory cross S4 (persistent state across turns)—targeted by
multi-turn manipulation (AS5). (4) Cross-Agent Communica-
tion—Delegation crosses S1 (instruction propagation) or S2
(invocations) plus S4 (context inheritance). Operations not
accessing external resources (pure computation) require no
protection—they cannot exfiltrate data or violate policies.

Minimality: Bach surface is necessary—removing any
surface leaves attacks unprotected: Remove S1 (Prompts):
indirect prompt injection via S3 data—LLM bypasses ver-
ification. Remove S2 (Tools): unauthorized tool execution
despite prompt verification. Remove S3 (Data): poisoned
RAG data—tool invocations despite S1/S2 verification. Re-
move S4 (Context): session hijacking and context poisoning
across multi-turn workflows. Therefore, {S1, S2, S3, S4} is
complete and minimal. Section [5] empirically validates this
across nine frameworks spanning three architectural layers.
O

Lemma 7 (PEP Independence): Compromising one
Policy Enforcement Point does not weaken verification at
other PEPs.

Proof: Each PEP verifies operations independently using

only: (1) cryptographic primitives for signature and hash
chain validation (L1), (2) public keys and policies retrieved
from the trusted control plane (L2), and (3) its own verifi-
cation logic (L3). PEPs share no runtime state and perform
no coordination. An adversary compromising PEP at one
surface (capability A3) can only bypass verification at that
surface—other surfaces perform independent verification us-
ing their own PEP instances. Multi-surface attacks require
compromising multiple independent PEPs, each protected
by L3. This realizes defense in depth: blast radius is limited
to the compromised PEP’s surface. [
Main Theorem Proof. Proof of Main Theorem: By Lemma
6, all resource access crosses at least one control surface.
Each surface has an embedded PEP enforcing independent
verification (Lemmas 1-4, 7). Multi-framework workflows
compose verification across framework boundaries (Lemma
5). Verification enforces intent via policy evaluation (Lemma
4) and integrity via signatures (Lemma 1) and hash chains
(Lemma 2). Attestations provide workflow dependencies
through signed, hash-chained claims.

Every resource access operation has one of two out-
comes: (1) Authorized Execution—operation satisfies all
cryptographic checks (valid signature, tamper-free context,
valid sequence number) and policy constraints (allowed
resource, parameters within bounds, required attestations
present), executes, and is logged with non-repudiable audit
trail (Lemma 3); (2) Blocked—operation fails at least one
check (invalid signature, policy violation, tampered context,
sequence violation, or missing attestation), rejected before
execution with violation logged.

Concrete Example: In the Q4 attack (Section [2),

poisoned data instructs the LLM to exfiltrate
credentials. When the LLM generates a filesystem
read for credentials.db, the tool’s PEP

evaluates  policy—which  denies  paths  matching
xcredentialx—blocking the operation despite valid
signature from the authenticated LLM. Policy enforcement
prevents unauthorized access regardless of signature
validity. Even if multiple boundaries are compromised,
each surface enforces independent verification (Lemma 7),
limiting blast radius.

Therefore, under L1-L3, adversaries with capabilities
A1-AS cannot perform unauthorized resource access without
detection, achieving O1-05. [J
Practical Implications. These formal properties enable the
operational solutions in Section [6} Lemma 1 enables princi-
pal propagation, Lemmas 4+5 enable verifiable delegation,
Lemma 2 enables session-level forward secrecy, and Lemma
3 enables bidirectional accountability.

8. Attack-Defense Validation

Section [/| proved authenticated workflows achieve O1-O5
against adversaries A1-AS5 under assumptions L1-L3. We
validate these formal guarantees through OWASP Top 10
coverage (9 of 10 risks), systematic attack testing (11 pat-
terns, 174 test cases, 100% recall, 0% false positives), and
production CVE analysis demonstrating protection where
baseline systems failed.

OWASP Top 10 for LLM Applications 2025 Coverage.
Table [2| maps our defenses to the OWASP Top 10 for LLM
Applications 2025 [7|], demonstrating systematic coverage
with explicit defense mechanisms and formal guarantees.

These defenses address all adversary capabilities (Sec-
tion [2): by-policy mechanisms block Al, A2, A5 through
runtime enforcement (Lemmas 4, 5); by-design mechanisms
eliminate A3, A4 through cryptographic hardness (Lemmas
1, 2, 3). Together, they achieve O1-OS5. This validates the
dual framework: neither mechanism alone suffices; both
together provide complete protection.

Systematic Attack Validation. Beyond OWASP’s broad
risk categories, we analyze attack mechanisms—how attacks
manifest in workflow composition. We identify 8 mechanism
categories spanning prompt manipulation, tool chaining,
credential theft, data exfiltration, malware/code execution,
resource exhaustion, multi-agent attacks, and policy viola-
tions. Detailed taxonomy appears in Appendix C. Table
shows 11 attack patterns providing representative coverage.

Each pattern includes multiple test scenarios: Data Exfil-
tration tests bulk export, multi-resource access, PII extrac-
tion, unauthorized access; Inference Attack tests attribute,
membership, reconstruction attacks. Our 174 test cases span
framework combinations (OpenAl, Anthropic, LangChain,
etc) and configuration variants.

Table [3] shows defense classification. By-design mecha-
nisms realize integrity properties (Lemmas 1, 2, 3), render-
ing attacks cryptographically impossible: identity spoofing,
session replay, policy substitution, context tampering, audit
manipulation, attestation forgery. By-policy mechanisms re-
alize intent properties (Lemmas 4, 5), blocking violations
through runtime verification: prompt injection, privilege
escalation, credential exfiltration, data harvesting, supply
chain, resource exhaustion, cross-agent attacks. Complex



TABLE 2. OWASP Top 10 FOR LLM APPLICATIONS 2025 COVERAGE

OWASP Risk Our Attack Tests Def Mech Section

LLMO1: Prompt Injection Prompt Injection, Atlas By-policy: Policy blocks unauthorized operations + MemoryIn- 84, §7
tegrity Verifier prevents goal manipulation

LLMO02: Info Disclosure Token Hijack, Data Exfil, Side Channel, | By-policy: Resource denial + StorageIntegrity Verifier detects ex- | §4, §5

Inference filtration patterns

LLMO3: Supply Chain Rogue Tool, Supply Chain By-design + By-policy: Code signing + tool registry with ap- §5, §7
proval policies

LLMO04: Data Poisoning Context tamper By-design: Hash chains + WorkflowIntegrity Verifier enforces step | §4, §7
sequences

LLMOS5: Output Handling (Cross-cutting) By-policy: Post-invocation verifiers sanitize outputs §5

LLMO6: Excessive Agency Keys to Kingdom, Confused Deputy By-policy: Policy composition + ToolAuthorizationVerifier en- | §3, §7
forces RBAC with pattern detection

LLMO7: Prompt Leakage Prompt variants By-design: Cryptographic segmentation (AuthPrompt) §4

LLMOS: Vector Weak. (RAG scenarios) By-policy: Attestations verify sources; policies restrict access §3, §5

LLMO09: Misinform. (Tangential) Pluggable verifiers; not primary security focus §5

LLM10: Unbounded Cons. Denial of Service By-policy: Rate limiting + resource quotas §5

Coverage: 9 of 10 OWASP risks. LL

04 partial (runtime poisoning prevented; training data out of scope). LLM09 tangential (quality vs. security).

TABLE 3. VALIDATED ATTACK PATTERNS AND DEFENSE CLASSIFICATION

Attack Pattern Category Defense Class OWASP
Prompt Injection Prompt Manipulation By-Policy LLMO1

Keys to Kingdom Tool Chaining By-Policy LLMO06
Confused Deputy Tool Chaining By-Policy LLMO06

Token Hijacking Credential Theft By-Policy LLMO02, LLM06
Session Fixation Credential Theft By-Design Beyond OWASP
Data Exfiltration Data Exfiltration By-Policy LLMO02

Side Channel Data Exfiltration By-Policy LLMO02
Inference Attack Data Exfiltration By-Policy LLMO02

Rogue Tool Malware/Code Exec By-Policy LLMO03

Supply Chain Malware/Code Exec By-Policy LLMO03

Denial of Service Resource Exhaustion By-Policy LLMI10

Total: 11 patterns, 18 explicit variants, 174 test cases including framework permutations

Coverage: 6 of 8 mechanism categories explicitly implemented; Multi-Agent and Policy Violation attacks addressed through compositional mechanisms (see text).

attacks like supply chain require both—code signing plus
tool approval policies. Six categories receive explicit im-
plementations; Multi-Agent Attacks are prevented through
independent PEP verification (Lemma 7).

Empirical Results: Our evaluation achieves 100% recall
with zero false positives across 174 test cases. By-design
elimination provides deterministic guarantees—violations
are cryptographically detected, not pattern-matched. Break-
ing verification requires solving computationally hard prob-
lems (L1) rather than crafting adversarial inputs, explaining
why attacks bypassing semantic defenses (Atlas, GitHub
MCP CVEs) are deterministically blocked by authenticated
workflows.

Real-World Attack Validation. We validate authenticated
workflows against two attacks that compromised production
systems—OpenAl’s Atlas agentic browser and GitHub’s
Model Context Protocol server. Both attacks succeeded
against baseline defenses using semantic guardrails; both
are completely blocked by authenticated workflows through
independent verification at control surfaces. We then demon-
strate deployment feasibility through enterprise integration
scenarios.

OpenAl Atlas Browser Attack. OpenAl’s Atlas agentic
browser [1] was compromised through prompt injection
causing credential exfiltration (OWASP LLMOI1, LLMO6,
LLMO02).

We emulate this attack: a legitimate workflow reads
financial reports; malicious input embeds hidden instructions
to leak credentials. The attack succeeds against seman-

tic guardrails which cannot distinguish adversarial prompts
from legitimate document content.

Policy enforcement blocks this cascade. Filesystem poli-

cies deny credential paths; network policies restrict external
endpoints. PEP verification (Lemma 4) rejects unauthorized
operations before execution regardless of LLM reasoning.
We tested allowlist, denylist, combinations across frame-
work variants. All blocked the attack with zero false posi-
tives.
GitHub MCP Prompt Injection. GitHub’s Model Context
Protocol server [[8]] (558,846+ downloads) was compromised
through malicious prompts in GitHub issues invoking MCP
filesystem tools for credential exfiltration (OWASP LLMOI,
LLMO03, LLMO02).

Multiple barriers block this cascade. First, tool autho-
rization requires cryptographic signatures from approved
registries—malicious tools rejected at discovery (Lemma 1).
Second, filesystem policies block credential access (Lemma
4). Third, cross-framework composition ensures filesystem
PEP verifies operations independently (Lemma 5). The at-
tack is blocked through independent verification at multiple
surfaces (Lemma 7).

Both attacks demonstrate that application-layer defenses
alone are insufficient—production systems were compro-
mised despite semantic guardrails. Authenticated workflows
achieve complete protection through defense in depth: multi-
ple independent cryptographic barriers must all be defeated
simultaneously. All test scenarios maintained 100% recall
with zero false positives, validating that formal guarantees



(Section [7) translate to production deployments. Section
positions these results against existing defenses.

9. Performance

We validate practical overhead through microbenchmarks on
commodity hardware (8-core, 16GB RAM) using ECDSA-
256 signatures and SHA-256 hashing. Cryptographic op-
erations typically under ~0.2ms overhead (ECDSA sig-
nature generation ~102us, verification ~89us, hash chain
updates <15us per operation). Policy operations: retrieval
latency depends on backend: in-memory (~5-50us), filesys-
tem (~30-200us), Redis (~50-300us); policy intersection
depends on composition—with typical 3-5 deep hierar-
chy remains under 100us. Custom verifiers: deterministic
checks (PII detection, path validation) add 30-400us; LLM-
based verifiers (prompt safety) add 150-500ms, dominating
when enabled but providing semantic analysis orthogonal to
cryptographic guarantees. End-to-end impact: For network-
bound operations (LLM inference, remote APIs), crypto-
graphic overhead (~0.2ms) is negligible versus network
latency (50-500ms). For local tool invocations, total PEP
verification overhead remains under 1ms without LLM ver-
ifiers. Audit logging occurs asynchronously via buffered I/O.

A companion paper provides comprehensive system
evaluation including production workload characterization,
framework integration costs across all nine frameworks,
large-scale deployment experience, and detailed perfor-
mance analysis with production-scale benchmarks.

10. Related Work

Recent surveys [9]-[12] identify four critical gaps in agen-
tic Al security: unpredictable multi-step workflows, cross-
framework compositions, variable environments, and un-
trusted entity interactions. These surveys diagnose frag-
mentation but lack systems solutions. Prior work addresses
either application semantics or infrastructure primitives; we
provide a trust layer positioned between both—protocol-
level primitives protecting four fundamental control surfaces
(prompts, tools, data, context) where all agent-resource in-
teractions occur.

Application-Layer Defenses Fail at Composition.
Framework-specific ~ security operates in isolation.
LangChain provides schemas and validation [13];
MCP implements authentication and permissions [14];
OpenAl enforces rate limits and moderation [15].
Recent vulnerabilities demonstrate composition gaps:
CVE-2024-8309 (LangChain prompt injection—SQL,
CVSS 9.0) [16], CVE-2024-36480 (RCE via unsanitized
eval()) [17], CVE-2025-6514 (MCP supply chain, 558K+
downloads) [8]], Atlas browser attack (October 2025) [1],
[2. No cryptographic binding exists across framework
boundaries.

Recent academic work addresses prompt injection de-
fenses [18]-[20]], tool use safety [21], and RAG retrieval
poisoning [22], [23]—malicious instructions embedded in
documents that compromise reasoning. Semantic defenses
(guardrails [24]-[26]) achieve 60-80% detection but remain

bypassable [27], [28]. We provide deterministic guaran-
tees (100% recall, zero false positives) through defense in
depth: by-design elimination renders attacks cryptograph-
ically infeasible; by-policy enforcement blocks violations.
The approaches are complementary—semantic defenses re-
duce attack surface; cryptographic enforcement provides
non-bypassable verification.

Infrastructure Primitives Lack Workflow Semantics.
Infrastructure primitives provide strong guarantees but lack
workflow semantics. Identity systems (SPIFFE [29], AWS
IAM [30]) and policy engines (OPA [31]], Cedar [32]]) com-
pose policies through intersection but cannot express tempo-
ral dependencies—“operation B requires proof that A com-
pleted.” Cedar composes policies via intersection but lacks:
(1) attestation-based workflow dependencies, (2) dynamic
principals resolved at runtime, (3) cryptographic binding
across four control surfaces. Without cryptographic proof
of prerequisite operations, policies must trust application-
reported state that attackers can forge.

MAPL addresses this through attestations—unforgeable
cryptographic proofs that operations completed, enabling
provably correct multi-step workflows. Unlike platform at-
testation (TPM [33], SGX [34]) proving code integrity
through measurements, MAPL attestations prove workflow
completion—cryptographic proofs that operations executed
with specific results, enabling temporal dependencies im-
possible with measurement-based attestation. We extend
authenticated system calls [5] and inline reference moni-
tors [6]], [35]] from kernel boundaries to four control surfaces,
adding stateful verification via authenticated context for
workflow dependencies and pluggable verifiers for domain-
specific checks (Appendix [A).

Orthogonal Approaches. Al safety [36]|]-[38] operates
at training-time; we provide runtime enforcement. Confi-
dential computing [34], [39] protects data confidentiality;
we address workflow integrity. These approaches are com-
plementary.

11. Conclusion

We  presented authenticated  workflows—the  first
complete trust layer for enterprise agentic Al. Our
key architectural insight: positioning at the protocol
level—between application-layer defenses that fail at
composition and infrastructure primitives that lack
workflow semantics—enables uniform protection across
heterogeneous frameworks while maintaining workflow
context. All agent-resource interactions cross four
fundamental control surfaces (prompts, tools, data,
context); protecting these surfaces uniformly achieves
compositional security impossible at either adjacent layer
alone.

Three contributions realize this vision: MAPL provides
cryptographic workflow dependencies via attestations, en-
abling sequential constraints without trusting application-
reported state; embedded independent PEPs realize defense
in depth where multiple cryptographic barriers must be
defeated simultaneously; integration across nine frameworks
through thin adapters validates surface completeness. Formal



proofs (Lemmas 1-7, Theorems 1-3) establish security prop-
erties; empirical validation demonstrates 100% recall, zero
false positives across 174 test cases, and protection against
two production CVEs that compromised baseline systems.
This addresses the five challenges posed in Section [I}
cryptographic integrity across frameworks, policy enforce-
ment at scale, privilege non-escalation through composition,
context integrity via hash chains, and complete account-
ability through non-repudiation. As agentic Al transitions
to production, authenticated workflows provide the security
substrate enabling safe deployment where composition gaps
currently block adoption.
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Appendix

Appendix A: MAPL Policy Examples

Base Organizational Policy Department Policy (Finance)

{ {
"policy_id": "acme:base", "policy_id": "acme:finance
"resources": ["tool:x", " — ",
— 1llm:x"], "extends": "acme:base",

"denied_resources": ["x "resources": ["data:
— credential«"], — finance:xx"],
"constraints": { "constraints": {
"attestations": [" "attestations": ["
< user_authenticated — mfa_verified"]
— "] }
} }

}
Inherits base, adds MFA.

Baseline with credential blocks.

Attestation Chaining Resource Policy (Database)

// Step 1l: Analysis {
{"policy_id": "fin:analyze "policy_id": "database:
— ", < customer_db",
"resources": ["tool:analyze "constraints": {
— "], "denied_parameters": {
"constraints": {" "query": ["DROP", "

<~ attestations":
["user_authenticated"]}} }
// -> Produces: }
< analysis_done }

<~ DELETE"]

// Step 2: Requires Step 1 Dual-perspective constraints.
{"policy_id": "fin:report",
"resources": ["tool:report
— "I,
"constraints": {"
— attestations":
["analysis_done"]}}
// -> Produces: report_done

// Step 3: Requires Step 2
{"policy_id": "fin:send",
"resources": ["tool:email
— "I,
"constraints": {"
— attestations":
["report_done"]}}

Cryptographic proof prevents
workflow hijacking.

Delegation Policy Emergency Access

{ {
"policy_id": "agent:
~— sub_agent",

"policy_id": "emergency:
< incident",

"extends": "acme:finance", "extends": "acme:base",
"resources": ["data: "validity": {
<« finance:reports "not_after": "2024-10-25
— x"], < T16:00:002Z"
"constraints": { },
"parameters": (" "constraints": {"

<~ attestations":
["ciso_approved"]}

~— date_range":
["2024-Q1", "2024-Q2"]}
} }
}

Time-bounded (2-hour

Narrowed delegation scope. window).

Appendix B: Custom Verifier Implementation

Verification Pipeline Architecture
The PEP verification pipeline composes five stages:

Invocation Arrives at PEP
+

1
Stage 1-3: DETERMINISTIC (100% recall, 0% FP) ‘

« Signature verification (Lemma 1)
« Policy binding verification |

. MAPL policy evaluation (Lemma 4) |
If this fails -> REJECT (cryptographically) |
|
T
4 PASS (authenticated + authorized)
1

Stage 4: CUSTOM VERIFIERS (may have FPs) |
. MemoryIntegrityVerifier

. WorkflowIntegrityVerifier

. ToolAuthorizationVerifier

. StoragelIntegrityVerifier

« + 18 more (Phases 2-4) |

Operates on VERIFIED context
Can only ADD restrictions, never remove

If this fails -> REJECT (policy violation) |

T
4 PASS

Execute Operation ‘

T
+

Stage 5: POST-PROCESSING VERIFIERS
. PIIMaskingVerifier

. Secret removal

. oOutput validation

Even if custom verifiers are compromised, Stages 1-3 enforce cryptographic integrity and policy constraints.

Production Verifiers

Four production verifiers address OWASP Top 10 threats
through domain-specific checks on cryptographically veri-
fied context:

MemorylIntegrity Verifier
Prevents memory poisoning (OWASP LLMOI)
« Rate limiting (10 updates/min)

« Protected fields (goals, system_prompt)

« Pattern detection (suspicious updates)

« Cryptographic integrity checks

WorkflowIntegrity Verifier
Prevents workflow hijacking (OWASP LLM04)
. enforcement (f isites)
« State tracking (prevent re-execution)
« Attestation chains (crypto proof)
* Duration limits (max 3600s)
StoragelIntegrity Verifier
Prevents data exfiltration (OWASP LLM02)
« Path traversal prevention
* Data classification (secret/sensitive)
« Encryption enforcement
+ Exfiltration detection (bulk reads)

ToolAuthorization Verifier

Prevents tool misuse (OWASP LLM0G)
* RBAC (role-to-tool mapping)

* D patterns (writs te)
« Usage rate limiting (30 tools/min)

« Privilege escalation prevention

Appendix C: Framework Integration Details

Detailed mappings showing how framework constructs map to authenticated workflow
primitives across nine frameworks.

A2A (Agent-to-Agent Protocol)

A2A defines standards for agent discovery, trust establishment, and communication.
MACAW provides the cryptographic infrastructure A2A requires:

A2A Requirements:

Agent Discovery —_

MACAW Already Provides:

‘ |Agent Registry |



- Agent directory 4 | L |
- Capability ads INTERCEPT | INTERCEPT |
+ \ ¢ \
Identity Verify — > |MA (Crypto Identity) | Sign as macawAgent | Sign invocation |
- Public/private keys 1 | 4 |
- X.509 certificates PEP verifies: PEP verifies:
- Signature - Signature
Trust Establish — > |attestation System | - Provider policy - App policy
- Claims about agent 1 | 4 |
- Verifiable proofs Execute LLM call ‘ Execute tool ‘
Secure Messaging — > |caw (signed Invocation) |
- Message signing One-sided Wrapping: Only Client Tools as macawAgents
- Replay protection
Application Code
Protocol Negotiat — > |capability Exchange | T
- Version negotiation v
SecureOpenAI/SecureClaude
Complete A2A Flow: LLM Passthrough Tool Wrapper
Agent A 1. Discovery Request Agent B chat.complete () search_tool ()
> 4 | 4
"Who can analyze data?" Direct to API INTERCEPT
(no interception) 4
Sign invocation
v v 4
PEP verifies:
Agent Registry - Signature
Registry: - Policy
- Agent B: capabilities["data_analysis"] 4
- Agent B: public_key="..." Execute tool

- Agent B: attestations["certified_analyst"]

2. Returns Agent 3 info Security Challenge: LLMs are untrusted for authorization decisions. Even with
M 3. Establish trust prompt engineering, adversarial prompts can cause unauthorized function calls. PEPs
Agent A » | Agent B verify at function execution boundaries regardless of LLM decisions.

- Verify B’s signature
- Check attestations . . .
" Validace poticy LangChain (Multi-Agent Orchestration)

Send CAW LangChain coordinates multi-step workflows across tools and LLMs. Multi-level
integration addresses four layers:

IS

- Message signed by A
- A’s attestations LangChain Architecture:
- Policy requirements

LangChain Orchestrator
(macawAgent)

Security Challenge: Agents must verify identity and capabilities before dele-
gating authority. Attestations provide cryptographic claims that enable trust decisions
without centralized authorities. Coordinate | Individual
workflow |operations

MCP (Model Context Protocol) Agent o |Tool = \‘Chain . \‘Memm . \‘

Agents Tools Chains Memory

Persistent state
across turns

Sequential
compose

macawAgent | Tool Policy AuthenticatedCntx
MCP servers expose three capability types: tools (executable functions), resources (w/PEP) | Intersect| (hash chains)
(data access with read/write/watch operations), and prompts (retrievable templates). )
. Each agent|Each tool |[Effective |Context integrity
The MACAW mapping: has own verifies |policy = |verified every
identity CAW N of all state transition
MCP Core Concepts: and policy|before tool

execution|policies |Prevents context

MCP Server poisoning attacks

Tools Resources Prompts
execute() | read/write() | getPrompt () Workflow Flow:

User: "Analyze documents and send summary"
+

LangChain Agent (macawAgent)
+

MACAW Mapping:

macawAgent (MCP Server) Step 1: Read docs
+ Tool invocation = CAW + PEP check + Execute
Tool Tool Authenticated N
(execute| (Resource) Prompt Step 2: Analyze content
+ Caw) (read + CAW) | (signed template) “ + LLM invocation = CAW + PEP check - Execute

.
Step 3: Send email

Resource Flow: + Tool invocation =+ CAW =+ PEP check + Execute
Client: "Read file.txt" = SecureMCP: invoke_tool ()

+ PEP: signature valid? + Policy: allow read? Policy Composition via Intersection:

+ Execute if allowed If tool_1 policy allows {A, B, C}

. . And tool_2 policy allows {B, C, D}

Security Challenge: Resources represent read-only data access, while tools can And chain composes tool_l = tool_2
modify state. The mapping enforces read-only constraints through policy, preventing Then effective policy = {B, C} (intersection)

. o . . . . Ch. iti t 1 tool 1 .
privilege escalation from data retrieval to data modification. an composition camnot relax tool poiicies

Security Challenge: Orchestrators expose multiple control points beyond indi-
OpenAI and Claude (LLM Interfaces) vidual tools—chain composition logic, agent reasoning, memory operations. Securing

. . . . . . only tools would leave composition and state management unprotected.
LLM providers expose inference APIs with function calling. Two deployment variants

exist based on trust assumptions: CrewAl (Role-Based Multi-Agent)

Two-sided Wrapping: Both LLM API and Client as macawAgents . . .
CrewAl organizes agents into crews where each member has a role executing tasks

‘ Application Code ‘ collaboratively:
T
v CrewAl Architecture:
SecureOpenAl/SecureClaude Crew
(macawAgent)
LLM Wrapper Tool Wrapper
Members Roles Tasks Collaboration

chat.complete () search_tool ()




Agents Role- Work items|Inter-agent Engine
with based assigned |communication Document |Process [Vector LLM generates
specific perms to agents indexing queries search answer from
roles retrieved docs
Member =+ |Role = Task Message - Index + |Query » |Retrieve =|Generate =
macawAgent |Attestat | CAW CAW with macawAgent | Tool Tool Tool
ion role check (w/PEP) (w/PEP) (w/PEP)

Writer "writer" |Execute Writer cannot Vector DB |Query Document |LLM receives
cannot attested |task only [invoke DB tools becomes validated|access only allowed
access DB |crypto- |if role reserved for macawAgent |against [validated |documents
tools graphical |matches Researcher role policy against

policy

Role-Based Flow:

Crew: Researcher + Writer RAG Flow with Security:
. User: "What were Q4 earnings?"
Task: "Write report on Q4 data" 4
4 Query Engine (Tool with PEP)
Researcher (macawAgent with "researcher" attestation): + CAW: query="Q4 earnings"
+ Invokes database_query tool + PEP checks:
+ PEP checks: signature valid? role="researcher"? - Signature valid?
+ Policy: "database_query" requires attestation["researcher"] - Policy allows query pattern?
+ Allowed: execute query - Denied patterns: spassword«, xcredentialss
4 -+ Approved: continue
Writer (macawAgent with "writer" attestation): +
+ Receives data from Researcher Retriever (Tool with PEP)
+ Attempts database_query tool -+ CAW: retrieve docs matching "Q4 earnings"
+ PEP checks: signature valid? role="writer"? + PEP checks:
+ Policy: "database_query" requires attestation["researcher"] - Can access these documents?
-+ Denied: Writer lacks required attestation - Allowed files: #publicx, *reportss
- Denied files: *private, ssecretw
Security Challenge: Role-based permissions must be cryptographically en- IAPPfoved= retrieve documents
forced. A “writer” role should not access databases reserved for “researchers,” even Generator (Tool with PEP)
if the LLM powering the writer attempts unauthorized invocations. Attestations bind + CAW: generate answer from retrieved docs

roles cryptographically to agent identities. + PEP checks: output validation
= Return answer to user

AutoGen (Autonomous Code Generation) Security Challenge: RAG pipelines access untrusted document stores. Malicious
documents could contain prompt injection or sensitive data. PEPs verify document

AutoGen enables autonomous code generation and execution. The security challenge . .
access patterns and query constraints before retrieval.

is unrestricted code execution:

AutoGen Architecture:

. . .
P ——— Haystack (Document Processing Pipelines)
(macawAgent)
Haystack provides document processing pipelines with nodes for retrieval, prepro-
Agents Code Exec Validation ‘ )
Gen cessing, and generation:
Conversat |Generate |Execute Verify code
ional Python |generated |before execution Haystack Architecture:
agents code to |code
solve Haystack Pipeline
tasks (macawAgent)
Agent = |LLM = |Exec - |verifiers: Pipeline | Nodes | Retrieve Process
macawAgent | Tool Tool ~ AST analysis
(w/PEP) |- Allowlist check Sequential |Pipeline |Document |Text processing
- Sandbox verify execution |steps retrieval |and generation
of nodes
Each agent |Code gen |Execution |Pre-invocation
signs becomes request = |verifiers analyze Pipeline ﬂ‘Node N ‘Retrleve ﬂ‘process -
requests CAW with |CAW code content ) macawhgent | Tool Tool Tool
code before execution (w/PEP) (w/PEP) (w/PEP)
Each node |Each node|Document |Processing
Code Execution Flow: ., in chain |verifies |access validated
User: "Calculate Fibonacci(10) enforces |CAW controlled|against policy
+ policy by policy
AutoGen Agent generates code:

def fib(n): return n if n<2 else fib(n-1)+fib(n-2)

e Pipeline Flow:
EXTC“UOH request + CAW User: "Process documents in ./reports/"
¢
PEP invokes pre-execution verifiers: Pipeline (macawhgent)
1. AST analysis: detect dangerous patterns n
(os.system, subprocess, eval, exec, import sys) Node 1: FileReader (Tool with PEP)
2. Allowlist check: only math/basic operations 5 CAN: read("./reports/™)
3. Sandbox verification: no network/file access S\ PEP checks:
+ - Allowed paths: sreportss, spublic
Verifiers approve + Execute in sandbox + Return result ~ Denied paths: scredentialss, sprivates
+ + Approved: read files
Malicious attempt: "os.system(’rm -rf /’)"
+ Node 2: Preprocessor (Tool with PEP)
AST analysis detects os.system =+ DENY + CAW: clean text, remove PIT
. . . . . + PEP checks: PII detection verifier
Security Challenge: Unrestricted code execution enables arbitrary operations + Execute with redaction
including data exfiltration and privilege escalation. Pluggable verifiers analyze code *

Node 3: Generator (Tool with PEP)
+ CAW: generate summary
+ PEP checks: output validation

Llamalndex (RAG Pipelines) - Return result

Policy Composition Across Nodes:

through AST parsing before execution, enforcing allowlists and sandbox constraints.

Llamalndex provides RAG (Retrieval Augmented Generation) pipelines for document If Node 1 allows {A, B, C}
processing and question answering: And Node 2 allows {B, C, D}
And pipeline chains Node 1 + Node 2
LlamalIndex Architecture: Then effective policy = {B, C} (intersection)
Llamal{“dex Plpel?“e Security Challenge: Document processing pipelines access file systems and
macawAgent

external data sources. Nodes must enforce path constraints and content validation to
Index Query Retrieve Generate prevent unauthorized access or data exfiltration.




Appendix D: AI Agent Threat Taxonomy

ID

[ Attack

[ Description & Impact

Category A: Prompt Injection & Input Manipulation

T-Al
T-A2
T-A3
T-A4

Hidden Prompt Injection
Semantic Obfuscation
Multi-Turn Poisoning
Delayed Activation

Embedded via white-on-white text, CSS, HTML comments. Impact: Command execution, credential theft.
Rephrasing to evade filters, base64 encoding. Impact: Filter bypass.

Gradual injection across turns, fabricated history. Impact: Privilege escalation.

Conditional triggers (time-bombs). Impact: Evading immediate detection.

T-B2
T-B3

Semantic Drift
Derivation Depth Exhaustion

Category B: Tool Chaining & Derivation Exploits
T-B1 | Privilege  Escalation  via | Combining benign operations (search—list—read). Impact: Policy circumvention.
Chaining

Progressive deviation from intent. Impact: Compounding interpretation errors.
Deep recursion chains. Impact: Resource exhaustion, policy drift.

Session Replay

Category C: Credential & Session Attacks

T-C1 | Token Extraction Reading credentials from context. Impact: Session hijacking, cloud access.
T-C2 | Credential Exfiltration Tool abuse sequence (read—-email). Impact: Persistent unauthorized access.
T-C3 | OAuth Flow Manipulation Tricking OAuth to attacker apps. Impact: Account takeover.

Reusing valid signed prompts. Impact: Stale authentication exploitation.

Categ

ory D: Data Exfiltration & Privacy Breaches

T-D1

Conversation History Mining

Extracting PIl/secrets from history. Impact: GDPR/HIPAA violations, IP theft.

T-D2 | Cross-Principal Leakage Insufficient context isolation. Impact: Unauthorized cross-user access.
T-D3 | Embedding Space Poisoning | Polluting vector DBs/RAG. Impact: Persistent data contamination.
T-D4 | Document Harvesting Systematic file extraction. Impact: Mass data theft.

Category E: Malware & Code Execution

T-E1 | Al-Invoked Malware Downloads/executes malicious code. Impact: Ransomware, backdoors.
T-E2 | Code Generation Exploitation | Generates disguised malicious scripts. Impact: Resource hijacking.
T-E3 | Persistence Installation Creating backdoors (.bashrc, cron). Impact: Persistent compromise.

T-F3

Storage/Bandwidth Saturation

T-E4 | Supply Chain via Packages Installing trojanized dependencies. Impact: Dependency confusion.
Category F: Resource Exhaustion & Cost Attacks

T-F1 | Computational Exhaustion Recursive ops, infinite loops. Impact: DoS, billing inflation.

T-F2 | API Rate Limit Exhaustion Depleting quotas via loops. Impact: Service degradation, $1000s+ costs.

Unbounded downloads/generation. Impact: System failure.

T-G4

Trust Anchor Compromise

Category G: Multi-Agent System Attacks

T-G1 | Agent-to-Agent Infection Poisoned prompts via MCP/A2A. Impact: Cascading compromise.
T-G2 | Workflow Hijacking Crafted inter-agent requests. Impact: Distributed policy bypass.
T-G3 | Byzantine Agent Behavior Malicious agent with valid credentials. Impact: Authorized attacks.

Corrupting registry/identity provider. Impact: Complete compromise.

Categ

ory H: Policy & Compliance

Violations

T-H1
T-H2
T-H3
T-H4

Policy Confusion

Audit Trail Manipulation
Compliance Bypass
Attestation Forgery

Exploiting rule ambiguities. Impact: Authorization gaps.

Corrupting logs, false entries. Impact: Loss of forensic evidence.
GDPR/HIPAA/SOC?2 violations. Impact: Legal liability, 4% revenue fines.
Fake security check proofs. Impact: Workflow security bypass.

Comprehensive taxonomy of 25 attack variants across eight categories (T-A through
T-H). Section 8 validates coverage.
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